




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
河北科技師范學(xué)院本科畢業(yè)論文(設(shè)計(jì))摘要PAGEIIPAGEI摘要PAGEI摘要諧振腔腔壁由導(dǎo)體組成,是產(chǎn)生高頻振蕩的有效工具;是比LC回路運(yùn)用更廣的振蕩元件;本文對(duì)真空中諧振腔與諧振頻率的關(guān)系做了詳細(xì)的討論;當(dāng)諧振腔中有介質(zhì)存在時(shí),對(duì)諧振頻率的影響也做了詳細(xì)的推導(dǎo),并對(duì)不同性質(zhì)的介質(zhì)對(duì)諧振頻率的影響做了分類討論,最后將不同情況下得出的諧振頻率的結(jié)論加以總結(jié),從而得出諧振腔諧振頻率不受諧振腔尺寸限制的結(jié)論,對(duì)傳統(tǒng)理論有了進(jìn)一步的發(fā)展;為探索和設(shè)計(jì)新穎的諧振腔提供理論依據(jù)。為設(shè)計(jì)合理的諧振腔提供現(xiàn)實(shí)的理論價(jià)值。關(guān)鍵詞:諧振腔;諧振頻率;左手介質(zhì);右手介質(zhì);幾何尺寸AbstractResonatoriscomposedbyconductorschamberwall,Itistheeffectivetoolsproducehigh-frequencyoscillatory,ThanLCcircuitisusedmorewidelyoscillationcomponent;Foravacuumresonatorandtheresonantfrequencyofrelationshipdiscussedindetail;Whenresonator,havemediahaveresonancefrequencyeffecttodoadetailedderivation,andthedifferentnatureofthemediaontheresonancefrequencyeffectofclassification,finallydiscussedthedifferentcasesobtainedtheconclusionsummarizedtheresonantfrequency,soastoobtaintheresonancefrequencyfromresonatorresonatorsizerestrictionsontraditionaltheory,theconclusionhasbeenfurtherdevelopment;Forexplorationandnoveldesignprovidesthetheorybasisfortheresonator.Todesignthereasonableresonatorproviderealistictheoreticalvalue.Keywords:Resonantcavity;Theresonantfrequency;Left-handedmedium;Therighthandmedium;Geometrydimension目錄PAGEIVPAGEII目錄目錄摘要 IAbstract I1緒論 11.1問(wèn)題的提出 11.2論文研究背景與意義 12真空諧振腔的諧振頻率與幾何尺寸 22.1一定頻率下電磁波基本方程 22.2諧振腔的截止頻率 43諧振腔填充介質(zhì)后的諧振頻率 63.1填充普通介質(zhì)(右手介質(zhì)) 73.1.1填充普通介質(zhì)時(shí)的基本方程 73.1.2填充普通介質(zhì)時(shí)諧振頻率的變化 93.2填充特殊介質(zhì)(左手介質(zhì)) 103.2.1左手介質(zhì)簡(jiǎn)介 103.2.2左手介質(zhì)存在的可能 103.2.3填充左手介質(zhì)時(shí)諧振頻率的變化 12結(jié)論 12參考文獻(xiàn) 13致謝 14PAGE101緒論1.1問(wèn)題的提出在實(shí)際當(dāng)中運(yùn)用的電磁波是用具有特定頻率的線路或元件激發(fā)的,低頻無(wú)線電波采用LC回路產(chǎn)生振蕩。在LC回路中,集中分布于電容內(nèi)部的電場(chǎng)和集中分布于電感線圈內(nèi)部的磁場(chǎng)交替激發(fā),它的振蕩頻率,如果要提高諧振頻率,必須減小L或C的值。頻率提高到一定限度后,具有很小的L和C值的電容和電感不能再使電場(chǎng)和磁場(chǎng)集中分布于它們的內(nèi)部,這時(shí)向外輻射的損耗會(huì)隨頻率的提高而增大。因此,LC回路不能有效的產(chǎn)生高頻振蕩。在微波范圍,通常采用諧振腔來(lái)產(chǎn)生高頻振蕩。諧振腔是腔壁由導(dǎo)體組成的它是產(chǎn)生高頻振蕩的有效工具,微波諧振腔的用途很廣。從電路的角度來(lái)講,它具備LC諧振單元具備的一切性質(zhì),比如選模等,使得它在濾波器、匹配電路甚至天線的設(shè)計(jì)里有廣泛應(yīng)用。但顯然它內(nèi)部場(chǎng)分布更為復(fù)雜,對(duì)于特定結(jié)構(gòu)的諧振腔體,具備特有的諧振模式和諧振頻率,這使得它在振蕩器的設(shè)計(jì)中顯得至關(guān)重要。另外,在很多電真空器件中,將慢波結(jié)構(gòu)安置在諧振腔中,使得電子與外加電場(chǎng)作用,從而產(chǎn)生特定頻率信號(hào)的輻射。當(dāng)然,很多寄生諧振也是由于諧振腔產(chǎn)生的結(jié)果,實(shí)際電路設(shè)計(jì)中應(yīng)盡量避免??傊?,諧振現(xiàn)象在微波電路中廣泛存在,無(wú)論是從電路的角度還是從場(chǎng)的角度,只要涉及到諧振的概念,諧振腔就扮演著重要的角色。因而對(duì)它的研究有很高的應(yīng)用價(jià)值。但其諧振頻率受其尺寸的限制。因此,本文重點(diǎn)來(lái)研究諧振腔諧振頻率與幾何尺寸的關(guān)系。1.2論文研究背景與意義由于近幾年電磁波的廣泛應(yīng)用,電磁波的研究已經(jīng)引起廣泛關(guān)注。但是,關(guān)于電磁波的諧振腔諧振頻率與諧振腔尺寸的關(guān)系并未受到重視。對(duì)于二者是否相互相關(guān),我們并不是很清楚,對(duì)于諧振腔諧振頻率與幾何尺寸與其關(guān)系更沒(méi)有系統(tǒng)和清楚的認(rèn)識(shí)。電動(dòng)力學(xué)及電磁場(chǎng)理論和電磁波與微波技術(shù)等的一些內(nèi)容對(duì)這些問(wèn)題有一定的研究,多數(shù)都為一些簡(jiǎn)單的最常見(jiàn)的諧振腔的研究而且其內(nèi)容大致都是諧振腔的頻率,品質(zhì)因素,耗散功率等的研究,并沒(méi)有對(duì)諧振腔諧振頻率與幾何尺寸進(jìn)行研究和討論。況且,在實(shí)際當(dāng)中運(yùn)用的電磁波是用具有特定頻率的線路或元件激發(fā)的,低頻無(wú)線電波采用LC回路產(chǎn)生振蕩。在LC回路中,集中分布于電容內(nèi)部的電場(chǎng)和集中分布于電感線圈內(nèi)部的磁場(chǎng)交替激發(fā),它的振蕩頻率,如果要提高諧振頻率,必須減小L或C的值。頻率提高到一定限度后,具有很小的L和C值的電容和電感不能再使電場(chǎng)和磁場(chǎng)集中分布于它們的內(nèi)部,這時(shí)向外輻射的損耗會(huì)隨頻率的提高而增大。因此,LC回路不能有效的產(chǎn)生高頻振蕩。諧振腔既可以實(shí)現(xiàn)LC達(dá)到的效果,也可以產(chǎn)生理想的高頻電磁波,在實(shí)際應(yīng)用當(dāng)中也很廣泛,因而對(duì)它的研究有很高的應(yīng)用價(jià)值,但其諧振頻率受其尺寸的限制;因此,我想通過(guò)本文的研究為探索和設(shè)計(jì)新穎的諧振腔提供現(xiàn)實(shí)的可能,為設(shè)計(jì)合理的諧振腔提供理論價(jià)值。2真空諧振腔的諧振頻率與幾何尺寸諧振腔是產(chǎn)生電磁波的主要元件,最常見(jiàn)的就是真空諧振腔;真空諧振腔雖然最為常見(jiàn),實(shí)際運(yùn)用也最廣;但是,諧振腔產(chǎn)生電磁波的頻率受其自身大小的影響。因此,下面我將從麥克斯韋方程出發(fā)推導(dǎo)出真空諧振腔諧振頻率與幾何尺寸的關(guān)系。2.1一定頻率下電磁波基本方程考慮矩形諧振腔且腔內(nèi)為真空(),又腔壁為理想導(dǎo)體;所以,我們利用理想導(dǎo)體的邊界條件和麥克斯韋方程以及在直角坐標(biāo)系下的亥姆霍茲方程的解法即可得到在真空情況下的關(guān)系:由麥克斯韋方程;(2.1.1)(2.1.2)(2.1.3)(2.1.4)在真空中時(shí)有,,則?。?.1.1)式的旋度有:(2.1.5)由(2.1.3)式可知;;則(2.1.5)式的左邊由矢量分析公式得:(2.1.6)將(2.1.6)式代入(2.1.5)式得;(2.1.7)同樣在利用(2.1.2)、(2.1.4)式可以得到磁場(chǎng)的方程:(2.1.8)令(2.1.9)則(2.1.7)、(2.1.8)方程可寫為(2.1.10)(2.1.11)以上兩式(2.1.10)(2.1.11)式電磁波在空間中的傳播波動(dòng)方程;該方程的解為波動(dòng)形式的。因此,可寫成方程:(2.1.12)(2.1.13)另一方面,在真空時(shí)我們將(2.1.12)、(2.1.13)式代入麥克斯韋方程組,消去共同因子(2.1.14)(2.1.15)(2.1.16)(2.1.17)需要注意的是以上方程并不是相互獨(dú)立的,我們?nèi)。?.1.1,這式子左邊展開(kāi)得;兩邊相等即得:(2.1.18)(2.1.19)(2.1.18)式稱為亥姆霍玆(Helmholtz)方程,其中該方程得解必須滿足(2.1.16)式;這里需要注意的是E的下腳標(biāo)表示不含時(shí)間變量的電場(chǎng)強(qiáng)度。2.2諧振腔的截止頻率我們現(xiàn)在所要研究的諧振腔腔壁是以理想導(dǎo)體做成的,因此,在邊界上滿足理想導(dǎo)體邊界條件;對(duì)于電場(chǎng)而言,電場(chǎng)在理想導(dǎo)體邊界面上的法向分量是連續(xù)的;切向分量是不連續(xù)的;磁場(chǎng)法向分量是不連續(xù)的,切向分量是連續(xù)的。因此有:(2.2.1)(2.2.2)(2.2.3)(2.2.4)現(xiàn)在將(2.1.18)式在直角坐標(biāo)系下分解并令為E的任意直角分量,有(2.2.5)用分離變量法,令(2.2.6)(2.2.5)分解為三個(gè)方程:(2.2.6)(2.2.7)(2.2.8)(2.2.9)我們?cè)O(shè)矩形諧振腔的三邊長(zhǎng)分別為a,b,c;則(2.2.6),(2.2.7),(2.2.8)三式的合解為;(2.2.10)由(2.2.1)式的邊界條件,把具體化為E的各分量,如果我們考慮,它對(duì)x=0壁而言是法向分量,所以有,因此在(2.2.10)式中不取~,而對(duì)于y=0,z=0時(shí)是切向分量,由(2.2.1)式可知(2.2.10)不取和項(xiàng)。同理我們對(duì)和也可以做相同的考慮。由此可得(2.2.11)(2.2.12)(2.2.13)我們?cè)倏紤]面上的邊界條件,得,和必須為的整數(shù)倍,即(m,n,p=0,1,2………)(2.2.14)其中,m,n,p分別表示沿矩形三邊所含的半波數(shù)目。在(2.2.11)至(2.2.13)中分別含三個(gè)任意常數(shù)A,B和C。由方程,它們之間應(yīng)滿足關(guān)系(2.2.15)所以,A,B,C中只有兩個(gè)是獨(dú)立的。當(dāng)滿足關(guān)系(2.2.14)和(2.2.15)式時(shí),(2.2.11)至(2.2.13)式代表腔內(nèi)的一種諧振波模。對(duì)于每一組的值,有兩個(gè)獨(dú)立偏振波模。諧振頻率由(2.2.9)和(2.2.14)式給出(2.2.16)其中,(m,n,p=0,1,2………)稱為諧振腔的本征頻率;由(2.2.16)式可以看出諧振腔的本征頻率除與和相關(guān)外還和諧振腔的幾何尺寸有關(guān);在這里我們只討論除a,b,c外其他相關(guān)參量為定值(即m,n,p取某一值時(shí)或諧振波模相同)的情況,因此,我們很明顯可以看出,本征頻率隨a,b,c的值增大而減小,隨a,b,c的值減小而增大;因此,當(dāng)我們想得到較高頻率的電磁波時(shí)可以減小諧振腔的幾何尺寸,但諧振腔的縮小尺寸要適當(dāng)。當(dāng)我們?nèi)”菊黝l率時(shí),即m=1,n=1,p=0時(shí)我們由若此時(shí)我們?nèi)。瑒t有最低的本征頻率,而此時(shí)對(duì)應(yīng)的諧振頻率為:(2.2.17此時(shí),對(duì)應(yīng)的頻率為在此種波模的最小諧振頻率,該諧振腔不能產(chǎn)生小于截止頻率的電磁波。因此,我們所要選擇的縮小的尺寸要適當(dāng)正是如此。3諧振腔填充介質(zhì)后的諧振頻率前一節(jié)我們推導(dǎo)真空諧振腔諧振頻率與幾何尺寸的關(guān)系;接下來(lái)我看另外二種情形。如果,我們不改變諧振腔的尺寸,向諧振腔里填入各種不同介質(zhì);諧振頻率會(huì)發(fā)生怎樣的變化;為了弄清這個(gè)問(wèn)題下面將從兩方面解決此問(wèn)題。3.1填充普通介質(zhì)(右手介質(zhì))“右手介質(zhì)(材料)”是指一種介電常數(shù)和磁導(dǎo)率同時(shí)為正值的介質(zhì)(材料)。電磁波在其傳播時(shí),波矢k、電場(chǎng)E和磁場(chǎng)H之間的關(guān)系符合右手定律,因此稱之為“右手介質(zhì)(材料)”;因?yàn)?,其自然界大量存在,所以右稱自然介質(zhì)。3.1.1填充普通介質(zhì)時(shí)的基本方程設(shè)真空諧振腔內(nèi)的原電場(chǎng)為和,諧振頻率為,腔內(nèi)電磁場(chǎng)滿足的麥克斯韋方程為:(3.1.1)(3.1.2)腔內(nèi)填充介質(zhì)(右手介質(zhì))以后,若其介質(zhì)參數(shù)為和,諧振頻率變?yōu)?,腔?nèi)電磁場(chǎng)變?yōu)楹停瑵M足的麥克斯韋方程變?yōu)?;?.1.3)(3.1.4)對(duì)(3.1.2)式和(3.1.3)式做如下處理,同時(shí)代入下式得;(3.1.5)同理對(duì)(3.1.1)和(3.1.2)式做如下處理有:,同時(shí)代入下式得;(3.1.6)然后,再將(3.1.5)式與(3.1.6)式相加并兩邊同時(shí)寫成積分形式,同時(shí)用高斯公式將左邊換成面積分形式有;=(3.1.7)在經(jīng)典電動(dòng)力學(xué)里,我們知道電場(chǎng)在介質(zhì)界面的法向分量是連續(xù)的,其切向分量為零,我們?cè)谥C振腔腔壁內(nèi)邊界上同樣利用這一特點(diǎn),假設(shè)(3.1.7)式研究所包含的空間為V,V是由有向曲面S所包圍的空間,則在其邊界上我們將令,同時(shí)在邊界上我們有電場(chǎng)的切向分量為零所以有,現(xiàn)在我們對(duì)(3.1.7)式做如下變換;(3.1.8)由(3.1.8)式推出(3.1.7)式的左邊最終得零,因此我們就有;(3.1.9)從(3.1.9)的推導(dǎo)來(lái)看無(wú)論右邊的參量因子是什么只要其形式是電場(chǎng)與電場(chǎng)共軛的內(nèi)積加上磁場(chǎng)與磁場(chǎng)共軛的內(nèi)積共同對(duì)整個(gè)空間做體積分,其結(jié)果總是為零。所以,我們可以任意寫出相似的其他公式來(lái)只要符合(3.1.9)式,為了我們以后的證明我寫出如下形式的式子;(3.1.10)現(xiàn)在我們將(3.1.9)加上(3.1.10)可以得到:}dV=0(3.1.11)再將(3.1.11)式變形為,(3.1.12)我們將(3.1.12)式繼續(xù)變形,即兩邊同除以參量,則可以得如下式子:(3.1.13)從(3.1.13)式我們可以看出諧振腔的諧振頻率與諧振腔里的介質(zhì)建立了一個(gè)明顯的關(guān)系表達(dá)式,我們知道真空中的磁導(dǎo)率和電容率()是一個(gè)穩(wěn)定的常數(shù)且為正值,我們?yōu)榱蓑?yàn)證某一電磁波在相同的諧振腔里有無(wú)介質(zhì)時(shí),介質(zhì)對(duì)諧振頻率的影響,這里我們利用對(duì)比的方法。3.1.2填充普通介質(zhì)時(shí)諧振頻率的變化我們從(3.1.13)式的左邊式子可以看出是諧振腔的諧振頻率兩種情況下的頻率差;而分母是諧振腔充滿介質(zhì)時(shí)的諧振頻率,不可能為零;所以左邊是有意義的且表示兩種情況下的諧振腔頻率的變化率。(3.1.14)從(3.1.14)若填充介質(zhì)的相對(duì)磁導(dǎo)率和相對(duì)介電常數(shù)很小的話可用原場(chǎng)、代替新場(chǎng)、,所以得:(3.1.15)由(3.1.15)式可以看出我們只需要討論分子的參量因子的關(guān)系既可以判斷出該式的變化規(guī)律。需要說(shuō)明的是雖然上下都是體積分形式;因?yàn)?,他們積分號(hào)內(nèi)的參數(shù)因子與,與并不相同,在積分時(shí)并不相等,所以上下積分號(hào)不能去掉。在這里我們只研究普通介質(zhì)(自然介質(zhì))對(duì)諧振頻率的影響,值得注意的是雖然(3.1.15)與(3.1.14)看上去完全相同但是此處的電容率和磁導(dǎo)率所包含的意義更廣。在此我們還需要進(jìn)行進(jìn)一步分析;對(duì)我們理論而言當(dāng)有;,將其代入到(3.1.15)時(shí)我們可得出(3.1.16)所以得(3.1.17)從(3.1.17)得推導(dǎo)過(guò)程與結(jié)論來(lái)看,當(dāng)我們把某一介質(zhì)放到諧振腔里(腔內(nèi)不是真空時(shí))諧振腔的諧振頻率與真空時(shí)相比變小了。3.2填充特殊介質(zhì)(左手介質(zhì))“左手介質(zhì)(材料)”是指一種介電常數(shù)和磁導(dǎo)率同時(shí)為負(fù)值的介質(zhì)(材料)。電磁波在其傳播時(shí),波矢k、電場(chǎng)E和磁場(chǎng)H之間的關(guān)系符合左手定律,因此稱之為“左手介質(zhì)(材料)”。它具有負(fù)相速度、負(fù)折射率、理想成像、等物理性質(zhì)。3.2.1左手介質(zhì)簡(jiǎn)介1967年,前蘇聯(lián)物理學(xué)家Veselago在前蘇聯(lián)一個(gè)學(xué)術(shù)刊物上發(fā)表了一篇論文,首次報(bào)道了他在理論研究中對(duì)物質(zhì)電磁學(xué)性質(zhì)的新發(fā)現(xiàn),即:當(dāng)ε和μ都為負(fù)值時(shí),電場(chǎng)、磁場(chǎng)和波矢之間構(gòu)成左手關(guān)系。他稱這種假想的物質(zhì)為左手材料(left-handedmaterials,LHM),同時(shí)指出,電磁波在左手材料中的行為與在右手材料中相反,比如光的負(fù)折射、負(fù)的切連科夫效應(yīng)、反多普勒效應(yīng)等等。這篇論文引起了一位英國(guó)人的關(guān)注,1968年被譯成英文重新發(fā)表在另一個(gè)前蘇聯(lián)物理類學(xué)術(shù)刊物上。從此,材料世界翻開(kāi)了新的一頁(yè)。3.2.2左手介質(zhì)存在的可能左手材料到目前為止在自然界中并未發(fā)現(xiàn),但早在1967你就有前蘇聯(lián)物理學(xué)家Veselago推導(dǎo)其存在的可能下面我們利用麥克斯韋方程來(lái)推導(dǎo):我們知道,單色波在各向同性的介質(zhì)中傳播波矢量與頻率滿足:(3.2.1)其中,式中的為均勻介質(zhì)的折射率,且(3.2.2)在(3.2.2)式中物質(zhì)的磁導(dǎo)率和介電常數(shù)同時(shí)為負(fù)值時(shí),(3.2.1)式中的結(jié)果并未發(fā)生改變,因此,我們可以得到兩種結(jié)果,即前一節(jié)我們已經(jīng)討論了和,現(xiàn)在我們來(lái)看當(dāng)同時(shí)小于零時(shí);由麥克斯韋方程;有(3.2.3)對(duì)于單色波而言,麥克斯韋方程可表示為:(3.2.4)由上式可看出,當(dāng)時(shí),將形成左手關(guān)系。在1998年,PendryJB提出一種周期排列且單元尺寸遠(yuǎn)小于波長(zhǎng)的金屬開(kāi)口環(huán)結(jié)構(gòu)諧振器(SRRS),開(kāi)口環(huán)諧振器在受到微波磁場(chǎng)的作用會(huì)產(chǎn)生感應(yīng)電流,如磁矩一樣加強(qiáng)或抵消原磁場(chǎng)。在諧振頻率處會(huì)出現(xiàn)負(fù)磁導(dǎo)率。(3.2.5)其中,F(xiàn)為諧振器在一個(gè)單元的填充因子,為依賴于(SRRS)結(jié)構(gòu)的謝振頻率,為等離子頻率,為損耗因子,當(dāng)時(shí),出現(xiàn)負(fù)值。3.2.3填充左手介質(zhì)時(shí)諧振頻率的變化上面我們從理論上和現(xiàn)實(shí)中都已經(jīng)說(shuō)明了磁導(dǎo)率和介電常數(shù)同時(shí)為負(fù)的介質(zhì)可以人工做成。由此,我們令我們把它們代入(3.1.14)式得(3.2.6)由(3.2.6)式我們可得;>0,所以我們得出的結(jié)論是;當(dāng)對(duì)同一諧振腔,真空時(shí)的諧振頻率與加入左手介質(zhì)時(shí)的諧振頻率相比要小,因?yàn)?,我們?gt;0(3.2.7)得(3.2.8)因此,當(dāng)諧振腔內(nèi)充有左手介質(zhì)時(shí)其諧振頻率會(huì)增大。當(dāng)我們想要得到較高頻率的電磁波時(shí),可以往諧振腔內(nèi)填入左手介質(zhì)同樣可以實(shí)現(xiàn)得到高頻率電磁波的目的。結(jié)論真空諧振腔的諧振頻率與幾何尺寸本文第一節(jié)根據(jù)電動(dòng)力學(xué)的知識(shí)推導(dǎo)出真空諧振腔的諧振頻率公式,并由此公式得出頻率隨a,b,c的值增大而減小,隨a,b,c的值減小而增大;而且,由此公式推出了諧振腔的截止頻率,當(dāng)我們想得到較高頻率的電磁波時(shí)可以縮小諧振腔的尺寸,但,由于有截止頻率的限制諧振腔不能無(wú)限縮小,它要滿足截止頻率的條件。此處,諧振腔的功能和LC振蕩電路相似,在此種情況下,我們需要改變諧振腔的尺寸才能實(shí)現(xiàn)諧振頻率的變化。諧振腔填充介質(zhì)后的諧振頻率在諧振腔內(nèi)填入介質(zhì)時(shí),其諧振頻率的變化是;一,當(dāng)我們填入右手介質(zhì)時(shí)其諧振頻率的變化是減?。ǎ?;二,當(dāng)我們填入左手介質(zhì)時(shí)其諧振頻率的變化是增大()。在此種情況下我們不需要改變諧振腔的大小同樣能實(shí)現(xiàn)諧振頻率的變化。參考文獻(xiàn)[1]郭碩鴻.電動(dòng)力學(xué)[M].第2版.北京:高等教育出版,2001.[2]毛鈞杰,劉熒,朱建清,電磁場(chǎng)與微波工程基礎(chǔ).北京:電子工業(yè)出版社,2004.[3]謝處方,饒克謹(jǐn).電磁場(chǎng)與電磁波[M].第4版.北京:高等教育出版社,2001[4]林璇英,張之翔.電動(dòng)力學(xué)題解[M].北京:科學(xué)出版社,2000.254.[5]畢德顯.電磁場(chǎng)理論.北京:電子工業(yè)出版社,1985[6]盧榮章.電磁場(chǎng)與電磁波基礎(chǔ).北京:高等教育出版社,1990[7]全澤松.電磁場(chǎng)理論.成都:電子科技大學(xué)出版社,1995[8]楊儒貴.電磁場(chǎng)與波.西安:西安交通大學(xué)出版社,1989.177~179[9]徐永斌等.工程電磁場(chǎng)基礎(chǔ).北京:北京航空航天大學(xué)出版社,1991.422424[10]高建平.電波傳播.沈陽(yáng)航空工業(yè)學(xué)院(內(nèi)部教材),1999.43
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年靜磁柵位移傳感器項(xiàng)目投資可行性研究分析報(bào)告
- 2025年度個(gè)人與村委會(huì)簽訂土地租賃與農(nóng)業(yè)技術(shù)培訓(xùn)協(xié)議
- 電子商務(wù)中的短期保險(xiǎn)服務(wù)策略探討
- 二零二五年度離婚協(xié)議書示范文本及婚姻終止財(cái)產(chǎn)分配細(xì)則
- 2023-2028年中國(guó)干燥綜合癥藥物行業(yè)市場(chǎng)深度分析及投資策略咨詢報(bào)告
- 2025年度文化產(chǎn)業(yè)員工入職知識(shí)產(chǎn)權(quán)保護(hù)合同
- 中學(xué)設(shè)備改造合同范本
- 二零二五年度新能源車輛制造單位員工勞動(dòng)合同書(含新能源汽車研發(fā)及制造協(xié)議)
- 個(gè)人店面租賃合同范例
- 光伏騙局合同范本
- 鞋業(yè)-品質(zhì)培訓(xùn)
- 中級(jí)會(huì)計(jì)實(shí)務(wù)所得稅課件
- 起重指揮人員安全操作規(guī)程
- 精神分裂癥的護(hù)理PPT
- JJG875-2005數(shù)字壓力計(jì)檢定規(guī)程
- 中小學(xué)生安全教育手冊(cè)全面版
- 09《馬克思主義政治經(jīng)濟(jì)學(xué)概論(第二版)》第九章
- 公司與個(gè)人合伙買車經(jīng)營(yíng)協(xié)議書
- DDI-能力解構(gòu)詞典
- 2015-2022年江西電力職業(yè)技術(shù)學(xué)院高職單招語(yǔ)文/數(shù)學(xué)/英語(yǔ)筆試參考題庫(kù)含答案解析
- 1 聚聚散散 教案人教版美術(shù)四年級(jí)下冊(cè)
評(píng)論
0/150
提交評(píng)論