山東省德州臨邑縣聯(lián)考2024屆九年級數(shù)學第一學期期末檢測模擬試題含解析_第1頁
山東省德州臨邑縣聯(lián)考2024屆九年級數(shù)學第一學期期末檢測模擬試題含解析_第2頁
山東省德州臨邑縣聯(lián)考2024屆九年級數(shù)學第一學期期末檢測模擬試題含解析_第3頁
山東省德州臨邑縣聯(lián)考2024屆九年級數(shù)學第一學期期末檢測模擬試題含解析_第4頁
山東省德州臨邑縣聯(lián)考2024屆九年級數(shù)學第一學期期末檢測模擬試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

山東省德州臨邑縣聯(lián)考2024屆九年級數(shù)學第一學期期末檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每題4分,共48分)1.如圖,從一塊半徑為的圓形鐵皮上剪出一個圓心角是的扇形,則此扇形圍成的圓錐的側(cè)面積為()A. B. C. D.2.如圖,正六邊形的邊長是1cm,則線段AB和CD之間的距離為()A.2cm B.cm C.cm D.1cm3.一個布袋里裝有2個紅球、3個黃球和5個白球,除顏色外其它都相同.攪勻后任意摸出一個球,是黃球的概率為()A. B. C. D.4.如圖,在△ABC中,AB=5,AC=3,BC=4,將△ABC繞A逆時針方向旋轉(zhuǎn)40°得到△ADE,點B經(jīng)過的路徑為弧BD,是圖中陰影部分的面積為()A.π﹣6 B.π C.π﹣3 D.+π5.如圖,在平面直角坐標系中,的頂點在第一象限,點在軸的正半軸上,,,將繞點逆時針旋轉(zhuǎn),點的對應(yīng)點的坐標是()A. B. C. D.6.四條線段成比例,其中=3,,,則等于(

)A.2㎝ B.㎝ C. D.8㎝7.在直角三角形ABC中,已知∠C=90°,∠A=40°,BC=3,則AC=()A.3sin40°B.3sin50°8.由于受豬瘟的影響,今年9月份豬肉的價格兩次大幅上漲,瘦肉價格由原來每千克元,連續(xù)兩次上漲后,售價上升到每千克元,則下列方程中正確的是()A. B.C. D.9.如圖,AB是半圓O的直徑,∠BAC=40°,則∠D的度數(shù)為()A.140° B.135° C.130° D.125°10.《九章算術(shù)》中記載一問題如下:“今有共買雞,人出八,盈三;人出七,不足四,問人數(shù)、物價各幾何?”意思是:今有人合伙購物,每人出8錢,會多3錢;每人出7錢,又差4錢,問人數(shù)、物價各多少?設(shè)有人,買雞的錢數(shù)為,依題意可列方程組為()A. B.C. D.11.如圖,點I是△ABC的內(nèi)心,∠BIC=130°,則∠BAC=()A.60° B.65° C.70° D.80°12.如圖,在矩形ABCD中,BC=2,AE⊥BD,垂足為E,∠BAE=30°,那么△ECD的面積是()A.2 B. C. D.二、填空題(每題4分,共24分)13.已知二次函數(shù)y=ax2+3ax+c的圖象與x軸的一個交點為(﹣4,0),則它與x軸的另一個交點的坐標是___.14.如圖,在△ABC中,AB=3,AC=4,BC=6,D是BC上一點,CD=2,過點D的直線l將△ABC分成兩部分,使其所分成的三角形與△ABC相似,若直線l與△ABC另一邊的交點為點P,則DP=________.15.函數(shù)y=–1的自變量x的取值范圍是.16.如圖所示的拋物線形拱橋中,當拱頂離水面2m時,水面寬4m.如果以拱頂為原點建立直角坐標系,且橫軸平行于水面,那么拱橋線的解析式為_____.17.如圖,在△ABC中,∠C=90°,BC=6,AC=9,將△ABC平移使其頂點C位于△ABC的重心G處,則平移后所得三角形與原△ABC的重疊部分面積是_____.18.2018年10月21日,重慶市第八屆中小學藝術(shù)工作坊在渝北區(qū)空港新城小學體育館開幕,來自全重慶市各個區(qū)縣共二十多個工作坊集中展示了自己的藝術(shù)特色.組委會準備為現(xiàn)場展示的參賽選手購買三種紀念品,其中甲紀念品5元/件,乙紀念品7元/件,丙紀念品10元/件.要求購買乙紀念品數(shù)量是丙紀念品數(shù)量的2倍,總費用為346元.若使購買的紀念品總數(shù)最多,則應(yīng)購買紀念品共_____件.三、解答題(共78分)19.(8分)已知二次函數(shù)y=a?4x+c的圖象過點(?1,0)和點(2,?9),(1)求該二次函數(shù)的解析式并寫出其對稱軸;(2)當x滿足什么條件時,函數(shù)值大于0?(不寫求解過程),20.(8分)如圖,在△ABC中,點D是邊AB上的一點,∠ADC=∠ACB.(1)證明:△ADC∽△ACB;(2)若AD=2,BD=6,求邊AC的長.21.(8分)隨著信息技術(shù)的迅猛發(fā)展,人們?nèi)ド虉鲑徫锏闹Ц斗绞礁佣鄻?、便捷.某校?shù)學興趣小組設(shè)計了一份調(diào)查問卷,要求每人選且只選一種你最喜歡的支付方式.現(xiàn)將調(diào)查結(jié)果進行統(tǒng)計并繪制成如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中所給的信息解答下列問題:(1)這次活動共調(diào)查了人;在扇形統(tǒng)計圖中,表示“支付寶”支付的扇形圓心角的度數(shù)為;(2)將條形統(tǒng)計圖補充完整.觀察此圖,支付方式的“眾數(shù)”是“”;(3)在一次購物中,小明和小亮都想從“微信”、“支付寶”、“銀行卡”三種支付方式中選一種方式進行支付,請用畫樹狀圖或列表格的方法,求出兩人恰好選擇同一種支付方式的概率.22.(10分)如圖,已知在△ABC中,AD是∠BAC平分線,點E在AC邊上,且∠AED=∠ADB.求證:(1)△ABD∽△ADE;(2)AD2=AB·AE.23.(10分)一個不透明的口袋中裝有4張卡片,卡片上分別標有數(shù)字1、﹣2、3、﹣4,這些卡片除數(shù)字外都相同.王興從口袋中隨機抽取一張卡片,鐘華從剩余的三張卡片中隨機抽取一張,求兩張卡片上數(shù)字之積.(1)請你用畫樹狀圖或列表的方法,列出兩人抽到的數(shù)字之積所有可能的結(jié)果.(2)求兩人抽到的數(shù)字之積為正數(shù)的概率.24.(10分)臺州人民翹首以盼的樂清灣大橋于2018年9月28日正式通車,經(jīng)統(tǒng)計分析,大橋上的車流速度(千米/小時)是車流密度(輛/千米)的函數(shù),當橋上的車流密度達到220輛/千米的時候就造成交通堵塞,此時車流速度為0千米/小時;當車流密度不超過20輛/千米,車流速度為80千米/小時,研究證明:當時,車流速度是車流密度的一次函數(shù).(1)求大橋上車流密度為50/輛千米時的車流速度;(2)在某一交通高峰時段,為使大橋上的車流速度大于60千米/小時且小于80千米/小時,應(yīng)把大橋上的車流密度控制在什么范圍內(nèi)?(3)車流量(輛/小時)是單位時間內(nèi)通過橋上某觀測點的車輛數(shù),即:車流量車流速度車流密度,求大橋上車流量的最大值.25.(12分)哈爾濱市教育局以冰雪節(jié)為契機,在全市校園內(nèi)開展多姿多彩的冰雪活動.某校為激發(fā)學生參與冰雪體育活動熱情,開設(shè)了“滑冰、抽冰尜、冰球、冰壺、雪地足球”五個冰雪項目,并開展了以“我最喜歡的冰雪項目”為主題的調(diào)查活動,圍繞“在滑冰、抽冰尜、冰球、冰壺、雪地足球中,你最喜歡的冰雪項目是什么?(每名學生必選且只選一個)”的問題在全校范圍內(nèi)隨機抽取了部分學生進行問卷調(diào)查,根據(jù)調(diào)查結(jié)果繪制了如圖所示的不完整的統(tǒng)計圖.請根據(jù)統(tǒng)計圖的信息回答下列問題:(1)本次調(diào)查共抽取了多少名學生?(2)求本次調(diào)查中,最喜歡冰球項目的人數(shù),并補全條形統(tǒng)計圖;(3)若該中學共有1800名學生,請你估計該中學最喜歡雪地足球的學生約有多少名.26.定義:只有一組對角是直角的四邊形叫做損矩形,連接它的兩個非直角頂點的線段叫做這個損矩形的直徑.如圖1,∠ABC=∠ADC=90°,四邊形ABCD是損矩形,則該損矩形的直徑是線段AC.同時我們還發(fā)現(xiàn)損矩形中有公共邊的兩個三角形角的特點:在公共邊的同側(cè)的兩個角是相等的.如圖1中:△ABC和△ABD有公共邊AB,在AB同側(cè)有∠ADB和∠ACB,此時∠ADB=∠ACB;再比如△ABC和△BCD有公共邊BC,在CB同側(cè)有∠BAC和∠BDC,此時∠BAC=∠BDC.(1)請在圖1中再找出一對這樣的角來:=.(2)如圖2,△ABC中,∠ABC=90°,以AC為一邊向外作菱形ACEF,D為菱形ACEF對角線的交點,連接BD,當BD平分∠ABC時,判斷四邊形ACEF為何種特殊的四邊形?請說明理由.(3)在第(2)題的條件下,若此時AB=6,BD=8,求BC的長.

參考答案一、選擇題(每題4分,共48分)1、A【分析】連接OB、OC和BC,過點O作OD⊥BC于點D,然后根據(jù)同弧所對的圓周角是圓心角的一半、等邊三角形判定和垂徑定理可得∠BOC=2∠BAC=120°,△ABC為等邊三角形,BC=2BD,然后根據(jù)銳角三角函數(shù)即可求出BD,從而求出BC和AB,然后根據(jù)扇形的面積公式計算即可.【題目詳解】解:連接OB、OC和BC,過點O作OD⊥BC于點D由題意可得:OB=OC=20cm,∠BAC=60°,AB=AC∴∠BOC=2∠BAC=120°,△ABC為等邊三角形,BC=2BD∴∠OBC=∠OCB=(180°-∠BOC)=30°,AB=AC=BC在Rt△OBD中,BD=OB·cos∠OBD=cm∴BC=2BD=cm∴AB=BC=cm∴圓錐的側(cè)面積=S扇形BAC=故選A.【題目點撥】此題考查的是圓周角定理、垂徑定理、等邊三角形的判定及性質(zhì)、銳角三角函數(shù)和求圓錐側(cè)面積,掌握圓周角定理、垂徑定理、等邊三角形的判定及性質(zhì)、銳角三角函數(shù)和扇形的面積公式是解決此題的關(guān)鍵.2、B【分析】連接AC,過E作EF⊥AC于F,根據(jù)正六邊形的特點求出∠AEC的度數(shù),再由等腰三角形的性質(zhì)求出∠EAF的度數(shù),由特殊角的三角函數(shù)值求出AF的長,進而可求出AC的長.【題目詳解】如圖,連接AC,過E作EF⊥AC于F,∵AE=EC,∴△AEC是等腰三角形,∴AF=CF,∵此多邊形為正六邊形,∴∠AEC==120°,∴∠AEF==60°,∴∠EAF=30°,∴AF=AE×cos30°=1×=,∴AC=,故選:B.【題目點撥】本題考查了正多邊形的應(yīng)用,等腰三角形的性質(zhì)和銳角三角函數(shù),掌握知識點是解題關(guān)鍵.3、B【分析】用黃色小球的個數(shù)除以總個數(shù)可得.【題目詳解】解:攪勻后任意摸出一個球,是黃球的概率為故答案為B.【題目點撥】本題考查了概率公式,解答的關(guān)鍵在于確定發(fā)生事件的總發(fā)生數(shù)和所求事件發(fā)生數(shù).4、B【解題分析】根據(jù)AB=5,AC=3,BC=4和勾股定理的逆定理判斷三角形的形狀,根據(jù)旋轉(zhuǎn)的性質(zhì)得到△AED的面積=△ABC的面積,得到陰影部分的面積=扇形ADB的面積,根據(jù)扇形面積公式計算即可.【題目詳解】解:∵AB=5,AC=3,BC=4,∴△ABC為直角三角形,由題意得,△AED的面積=△ABC的面積,由圖形可知,陰影部分的面積=△AED的面積+扇形ADB的面積﹣△ABC的面積,∴陰影部分的面積=扇形ADB的面積=,故選B.【題目點撥】考查的是扇形面積的計算、旋轉(zhuǎn)的性質(zhì)和勾股定理的逆定理,根據(jù)圖形得到陰影部分的面積=扇形ADB的面積是解題的關(guān)鍵.5、D【分析】過點作x軸的垂線,垂足為M,通過條件求出,MO的長即可得到的坐標.【題目詳解】解:過點作x軸的垂線,垂足為M,∵,,∴,,∴,在直角△中,,,∴,,∴OM=2+1=3,∴的坐標為.故選:D.【題目點撥】本題考查坐標與圖形變化-旋轉(zhuǎn),解直角三角形等知識,解題的關(guān)鍵是學會添加常用輔助線,構(gòu)造直角三角形解決問題.6、A【分析】四條線段a,b,c,d成比例,則=,代入即可求得b的值.【題目詳解】解:∵四條線段a,b,c,d成比例,

∴=,

∴b===2(cm).

故選A.【題目點撥】本題考查成比例線段,解題關(guān)鍵是正確理解四條線段a,b,c,d成比例的定義.7、D【解題分析】試題分析:∵∠C=90°,∠A=40°,∴∠B=50°.∵BC=3,tanB=ACBC故選D.考點:1.直角三角形兩銳角的關(guān)系;2.銳角三角函數(shù)定義.8、A【分析】增長率問題,一般用增長后的量=增長前的量×(1+增長率),先表示出第一次提價后商品的售價,再根據(jù)題意表示第二次提價后的售價,然后根據(jù)已知條件得到關(guān)于a%的方程.【題目詳解】解:當豬肉第一次提價時,其售價為;當豬肉第二次提價后,其售價為故選:.【題目點撥】本題考查了求平均變化率的方法.若設(shè)變化前的量為a,變化后的量為b,平均變化率為x,則經(jīng)過兩次變化后的數(shù)量關(guān)系為a(1±x)2=b.9、C【分析】根據(jù)圓周角定理可知,再由三角形的內(nèi)角和可得,最后根據(jù)圓內(nèi)接四邊形的性質(zhì)即可得.【題目詳解】AB是半圓O的直徑(圓周角定理)(圓內(nèi)接四邊形的對角互補)故選:C.【題目點撥】本題考查了圓周角定理、三角形的內(nèi)角和定理、圓內(nèi)接四邊形的性質(zhì),掌握靈活運用各定理和性質(zhì)是解題關(guān)鍵.10、D【分析】一方面買雞的錢數(shù)=8人出的總錢數(shù)-3錢,另一方面買雞的錢數(shù)=7人出的總錢數(shù)+4錢,據(jù)此即可列出方程組.【題目詳解】解:設(shè)有人,買雞的錢數(shù)為,根據(jù)題意,得:.【題目點撥】本題考查的是二元一次方程組的應(yīng)用,正確理解題意、根據(jù)買雞的總錢數(shù)不變列出方程組是解題關(guān)鍵.11、D【分析】根據(jù)三角形的內(nèi)接圓得到∠ABC=2∠IBC,∠ACB=2∠ICB,根據(jù)三角形的內(nèi)角和定理求出∠IBC+∠ICB,求出∠ACB+∠ABC的度數(shù)即可;【題目詳解】解:∵點I是△ABC的內(nèi)心,∴∠ABC=2∠IBC,∠ACB=2∠ICB,∵∠BIC=130°,∴∠IBC+∠ICB=180°﹣∠CIB=50°,∴∠ABC+∠ACB=2×50°=100°,∴∠BAC=180°﹣(∠ACB+∠ABC)=80°.故選D.【題目點撥】本題主要考查了三角形的內(nèi)心,掌握三角形的內(nèi)心的性質(zhì)是解題的關(guān)鍵.12、D【分析】根據(jù)已知條件,先求Rt△AED的面積,再證明△ECD的面積與它相等.【題目詳解】如圖:過點C作CF⊥BD于F.∵矩形ABCD中,BC=2,AE⊥BD,∠BAE=30°.∴∠ABE=∠CDF=60°,AB=CD,AD=BC=2,∠AEB=∠CFD=90°,∠AED=30°,∴△ABE≌△CDF.∴AE=CF.∴S△AED=EDAE,S△ECD=EDCF.∴S△AED=S△CDE∵AE=1,DE=,∴△ECD的面積是.故答案選:D.【題目點撥】本題考查了矩形的性質(zhì)與含30度角的直角三角形相關(guān)知識,解題的關(guān)鍵是熟練的掌握矩形的性質(zhì)與含30度角的直角三角形并能運用其知識解題.二、填空題(每題4分,共24分)13、(1,0).【分析】先根據(jù)二次函數(shù)解析式求出拋物線的對稱軸,然后利用拋物線的對稱性即可求出它與x軸的另一個交點的坐標.【題目詳解】二次函數(shù)y=ax2+3ax+c的對稱軸為:x=﹣=﹣,∵二次函數(shù)y=ax2+3ax+c的圖象與x軸的一個交點為(﹣4,0),∴它與x軸的另一個交點坐標與(﹣4,0)關(guān)于直線x=﹣對稱,其坐標是(1,0).故答案是:(1,0).【題目點撥】此題考查的是已知二次函數(shù)圖像與x軸的一個交點坐標,求與x軸的另一個交點坐標,掌握拋物線是軸對稱圖形和拋物線的對稱軸公式是解決此題的關(guān)鍵.14、1,,【分析】分別利用當DP∥AB時,當DP∥AC時,當∠CDP=∠A時,當∠BPD=∠BAC時求出相似三角形,進而得出結(jié)果.【題目詳解】BC=6,CD=2,

∴BD=4,①如圖,當DP∥AB時,△PDC∽△ABC,

∴,∴,∴DP=1;②如圖,當DP∥AC時,△PBD∽△ABC.

∴,∴,∴DP=;③如圖,當∠CDP=∠A時,∠DPC∽△ABC,∴,∴,∴DP=;④如圖,當∠BPD=∠BAC時,過點D的直線l與另一邊的交點在其延長線上,,不合題意。綜上所述,滿足條件的DP的值為1,,.【題目點撥】本題考查了相似變換,利用分類討論得出相似三角形是解題的關(guān)鍵,注意不要漏解.15、x≥1【解題分析】試題分析:根據(jù)二次根式有意義的條件是被開方數(shù)大于等于1,可知x≥1.考點:二次根式有意義16、y=x1【解題分析】根據(jù)題意以拱頂為原點建立直角坐標系,即可求出解析式.【題目詳解】如圖:以拱頂為原點建立直角坐標系,由題意得A(1,?1),C(0,?1),設(shè)拋物線的解析式為:y=ax1把A(1,?1)代入,得4a=?1,解得a=?,所以拋物線解析式為y=?x1.故答案為:y=?x1.【題目點撥】本題考查了二次函數(shù)的應(yīng)用,解決本題的關(guān)鍵是根據(jù)題意建立平面直角坐標系.17、3【題目詳解】由三角形的重心是三角形三邊中線的交點,根據(jù)中心的性質(zhì)可得,G是將AB邊上的中線分成2:1兩個部分,所以重合部分的三角形與原三角形的相似比是1:3,所以重合部分的三角形面積與原三角形的面積比是1:9,因為原三角形的面積是所以27,所以重合部分三角形面積是3,故答案為:3.18、2【分析】設(shè)購買甲紀念品x件,丙紀念品y件,則購進乙紀念品2y件,根據(jù)總價=單價×數(shù)量,即可得出關(guān)于x,y的二元一次方程,結(jié)合x,y均為非負整數(shù),即可求出x,y的值,進而可得出(x+y+2y)的值,取其最大值即可得出答案.【題目詳解】設(shè)購買甲紀念品x件,丙紀念品y件,則購進乙紀念品2y件,依題意,得:5x+7×2y+10y=346,∴x=,∵x,y均為非負整數(shù),∴346﹣24y為5的整數(shù)倍,∴y的尾數(shù)為4或9,∴,,,∴x+y+2y=2或53或1.∵2>53>1,∴最多可以購買2件紀念品.故答案為:2.【題目點撥】本題主要考查二元一次方程的實際應(yīng)用,根據(jù)題意,求出x,y的非負整數(shù)解,是解題的關(guān)鍵.三、解答題(共78分)19、(1),;(2)當x<或x>5時,函數(shù)值大于1.【分析】(1)把(-1,1)和點(2,-9)代入y=ax2-4x+c,得到一個二元一次方程組,求出方程組的解,即可得到該二次函數(shù)的解析式,然后求出對稱軸;(2)求得拋物線與x軸的交點坐標后即可確定正確的答案.【題目詳解】解:(1)∵二次函數(shù)的圖象過點(?1,1)和點(2,?9),∴,解得:,∴;∴對稱軸為:;(2)令,解得:,,如圖:∴點A的坐標為(,1),點B的坐標為(5,1);∴結(jié)合圖象得到,當x<或x>5時,函數(shù)值大于1.【題目點撥】本題主要考查對用待定系數(shù)法求二次函數(shù)的解析式及拋物線與x軸的交點坐標的知識,解題的關(guān)鍵是正確的求得拋物線的解析式.20、(1)見解析;(2)1.【分析】(1)根據(jù)兩角對應(yīng)相等的兩個三角形相似即可證明;(2)利用相似三角形的對應(yīng)邊對應(yīng)成比例列式求解即可.【題目詳解】(1)證明:∵∠A=∠A,∠ADC=∠ACB,∴△ADC∽△ACB.(2)解:∵△ADC∽△ACB,∴=,AB=AD+DB=2+6=8∴AC2=AD?AB=2×8=16,∵AC>0,∴AC=1.【題目點撥】本題考查了相似三角形的判定與性質(zhì):在判定兩個三角形相似時,應(yīng)注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發(fā)揮基本圖形的作用,尋找相似三角形的一般方法是通過作平行線構(gòu)造相似三角形.靈活運用相似三角形的性質(zhì)進行幾何計算.21、(1)200、81°;(2)補圖見解析;(3)【解題分析】分析:(1)用支付寶、現(xiàn)金及其他的人數(shù)和除以這三者的百分比之和可得總?cè)藬?shù),再用360°乘以“支付寶”人數(shù)所占比例即可得;(2)用總?cè)藬?shù)乘以對應(yīng)百分比可得微信、銀行卡的人數(shù),從而補全圖形,再根據(jù)眾數(shù)的定義求解可得;(3)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與兩人恰好選擇同一種支付方式的情況,再利用概率公式即可求得答案.詳解:(1)本次活動調(diào)查的總?cè)藬?shù)為(45+50+15)÷(1﹣15%﹣30%)=200人,則表示“支付寶”支付的扇形圓心角的度數(shù)為360°×=81°,故答案為:200、81°;(2)微信人數(shù)為200×30%=60人,銀行卡人數(shù)為200×15%=30人,補全圖形如下:由條形圖知,支付方式的“眾數(shù)”是“微信”,故答案為:微信;(3)將微信記為A、支付寶記為B、銀行卡記為C,畫樹狀圖如下:畫樹狀圖得:∵共有9種等可能的結(jié)果,其中兩人恰好選擇同一種支付方式的有3種,∴兩人恰好選擇同一種支付方式的概率為=.點睛:此題考查了樹狀圖法與列表法求概率.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.22、(1)、證明過程見解析;(2)、證明過程見解析【分析】試題分析:(1)、根據(jù)角平分線得出∠BAD=∠DAE,結(jié)合∠AED=∠ADB得出相似;(2)、根據(jù)相似得出答案.【題目詳解】試題解析:(1)、∵AD是∠BAC平分線∴∠BAD=∠DAE又∵∠AED=∠ADB∴△ABD∽△ADE(2)、∵△ABD∽△ADE,∴∴AD2=AB·AE.考點:相似三角形的判定與性質(zhì)23、(1)詳見解析;(2).【分析】(1)根據(jù)題意可以畫出樹狀圖,即可列出兩人抽到的數(shù)字之積所有可能的結(jié)果;(2)根據(jù)概率公式,結(jié)合(1)中的結(jié)果即可求得兩人抽到的數(shù)字之積為正數(shù)的概率.【題目詳解】解:(1)如下圖所示,;(2)由(1)可知,一共有12種可能性,兩人抽到的數(shù)字之積為正數(shù)的可能性有4種,∴兩人抽到的數(shù)字之積為正數(shù)的概率是:=,即兩人抽到的數(shù)字之積為正數(shù)的概率是.【題目點撥】本題考查了用列表法(或樹狀圖法)求概率:當一次試驗要設(shè)計兩個因素,并且可能出現(xiàn)的結(jié)果數(shù)目較多時,為不重不漏地列出所有可能的結(jié)果,通常采用列表法;當一次試驗要設(shè)計三個或更多的因素時,用列表法就不方便了,為了不重不漏地列出所有可能的結(jié)果,通常采用樹狀圖法求概率.24、(1)車流速度68千米/小時;(2)應(yīng)把大橋上的車流密度控制在20千米/小時到70千米/小時之間;(3)車流量y取得最大值是每小時4840輛【分析】(1)設(shè)車流速度與車流密度的函數(shù)關(guān)系式為v=kx+b,列式求出函數(shù)解析式,將x=50代入即可得到答案;(2)根據(jù)題意列不等式組即可得到答案;(3)分兩種情況:、時分別求出y的最大值即可.【題目詳解】(1)設(shè)車流速度與車流密度的函數(shù)關(guān)系式為v=kx+b,由題意,得,解得,∴當時,車流速度是車流密度的一次函數(shù)為,當x=50時,(千米/小時),∴大橋上車流密度為50/輛千米時的車流速度68千米/小時;(2)由題意得,解得20<x<70,符合題意,∴為使大橋上的車流速度大于60千米/小時且小于80千米/小時,應(yīng)把大橋上的車流密度控制在20千米/小時到70千米/小時之間;(3)由題意得y=vx,當時,y=80x,∵k=80>0,∴y隨x的增大而增大,∴當x=20時,y有最大值1600,當時,y,當x=110時,y有最大值4840,∵4840>1600,∴當車流密度是110輛/千米,車流量y取得最大值是每小時4840輛.【題目點撥】此題考查待定系數(shù)法求一

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論