2024屆山東省泰安寧陽縣聯(lián)考數(shù)學九年級第一學期期末復習檢測試題含解析_第1頁
2024屆山東省泰安寧陽縣聯(lián)考數(shù)學九年級第一學期期末復習檢測試題含解析_第2頁
2024屆山東省泰安寧陽縣聯(lián)考數(shù)學九年級第一學期期末復習檢測試題含解析_第3頁
2024屆山東省泰安寧陽縣聯(lián)考數(shù)學九年級第一學期期末復習檢測試題含解析_第4頁
2024屆山東省泰安寧陽縣聯(lián)考數(shù)學九年級第一學期期末復習檢測試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆山東省泰安寧陽縣聯(lián)考數(shù)學九年級第一學期期末復習檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.拋物線的頂點坐標為()A. B. C. D.2.由兩個可以自由轉(zhuǎn)動的轉(zhuǎn)盤、每個轉(zhuǎn)盤被分成如圖所示的幾個扇形、游戲者同時轉(zhuǎn)動兩個轉(zhuǎn)盤,如果一個轉(zhuǎn)盤轉(zhuǎn)出了紅色,另一轉(zhuǎn)盤轉(zhuǎn)出了藍色,游戲者就配成了紫色下列說法正確的是()A.兩個轉(zhuǎn)盤轉(zhuǎn)出藍色的概率一樣大B.如果A轉(zhuǎn)盤轉(zhuǎn)出了藍色,那么B轉(zhuǎn)盤轉(zhuǎn)出藍色的可能性變小了C.先轉(zhuǎn)動A轉(zhuǎn)盤再轉(zhuǎn)動B轉(zhuǎn)盤和同時轉(zhuǎn)動兩個轉(zhuǎn)盤,游戲者配成紫色的概率不同D.游戲者配成紫色的概率為3.在平面直角坐標系中,若干個半徑為1的單位長度,圓心角為60°的扇形組成一條連續(xù)的曲線,點P從原點O出發(fā),向右沿這條曲線做上下起伏運動(如圖),點P在直線上運動的速度為每1個單位長度.點P在弧線上運動的速度為每秒個單位長度,則2019秒時,點P的坐標是()A. B.C. D.4.如圖,已知矩形ABCD的頂點A,D分別落在x軸、y軸上,OD=2OA=6,AD:AB=3:1,則點C的坐標是()A.(2,7) B.(3,7) C.(3,8) D.(4,8)5.在中,,,則()A.60° B.90° C.120° D.135°6.將半徑為5cm的圓形紙片沿著弦AB進行翻折,弦AB的中點與圓心O所在的直線與翻折后的劣弧相交于C點,若OC=3cm,則折痕AB的長是()A. B. C.4cm或6cm D.或7.直角三角形的兩邊長分別為16和12,則此三角形的外接圓半徑是()A.8或6 B.10或8 C.10 D.88.如圖所示,將一個含角的直角三角板繞點逆時針旋轉(zhuǎn),點的對應(yīng)點是點,若點、、在同一條直線上,則三角板旋轉(zhuǎn)的度數(shù)是()A. B. C. D.9.已知x1,x2是一元二次方程x2+(2m+1)x+m2﹣1=0的兩不相等的實數(shù)根,且,則m的值是()A.或3 B.﹣3 C. D.10.關(guān)于二次函數(shù),下列說法正確的是()A.圖像與軸的交點坐標為 B.圖像的對稱軸在軸的右側(cè)C.當時,的值隨值的增大而減小 D.的最小值為-3二、填空題(每小題3分,共24分)11.反比例函數(shù)的圖象在每一象限內(nèi),y隨著x的增大而增大,則k的取值范圍是______.12.關(guān)于的一元二次方程的二根為,且,則_____________.13.小球在如圖6所示的地板上自由滾動,并隨機停留在某塊正方形的地磚上,則它停在白色地磚上的概率是____.

14.把一個小球以20米/秒的速度豎直向上彈出,它在空中的高度h(米)與時間t(秒),滿足關(guān)系:h=20t-5t2,當小球達到最高點時,小球的運動時間為第_________秒時.15.如圖,在?ABCD中,AB=6,BC=6,∠D=30°,點E是AB邊的中點,點F是BC邊上一動點,將△BEF移沿直線EF折疊,得到△GEF,當FG∥AC時,BF的長為_____.16.如圖,在矩形ABCD中,E是AD邊的中點,BE⊥AC于點F,連接DF,分析下列五個結(jié)論:①△AEF∽△CAB;②CF=2AF;③DF=DC;④S四邊形CDEF=S△ABF,其中正確的結(jié)論有_____個.17.若實數(shù)a、b滿足a+b2=2,則a2+5b2的最小值為_____.18.一件商品的原價是100元,經(jīng)過兩次提價后的價格為121元,設(shè)平均每次提價的百分率都是x.根據(jù)題意,可列出方程___________________.三、解答題(共66分)19.(10分)某數(shù)學小組在郊外的水平空地上對無人機進行測高實驗.如圖,兩臺測角儀分別放在A、B位置,且離地面高均為1米(即米),兩臺測角儀相距50米(即AB=50米).在某一時刻無人機位于點C(點C與點A、B在同一平面內(nèi)),A處測得其仰角為,B處測得其仰角為.(參考數(shù)據(jù):,,,,)(1)求該時刻無人機的離地高度;(單位:米,結(jié)果保留整數(shù))(2)無人機沿水平方向向左飛行2秒后到達點F(點F與點A、B、C在同一平面內(nèi)),此時于A處測得無人機的仰角為,求無人機水平飛行的平均速度.(單位:米/秒,結(jié)果保留整數(shù))20.(6分)在平面直角坐標系中,直線與雙曲線相交于,兩點,點坐標為(-3,2),點坐標為(n,-3).(1)求一次函數(shù)和反比例函數(shù)的表達式;(2)如果點是軸上一點,且的面積是5,求點的坐標.(3)利用函數(shù)圖象直接寫出關(guān)于x的不等式的解集.21.(6分)交通安全是社會關(guān)注的熱點問題,安全隱患主要是超速和超載.某中學八年級數(shù)學活動小組的同學進行了測試汽車速度的實驗.如圖,先在筆直的公路1旁選取一點P,在公路1上確定點O、B,使得PO⊥l,PO=100米,∠PBO=45°.這時,一輛轎車在公路1上由B向A勻速駛來,測得此車從B處行駛到A處所用的時間為3秒,并測得∠APO=60°.此路段限速每小時80千米,試判斷此車是否超速?請說明理由(參考數(shù)據(jù):=1.41,=1.73).22.(8分)化簡求值:,其中.23.(8分)有兩個構(gòu)造完全相同(除所標數(shù)字外)的轉(zhuǎn)盤A、B,游戲規(guī)定,轉(zhuǎn)動兩個轉(zhuǎn)盤各一次,指向大的數(shù)字獲勝.現(xiàn)由你和小明各選擇一個轉(zhuǎn)盤游戲,你會選擇哪一個,為什么?24.(8分)如圖,已知,相交于點為上一點,且.(1)求證:;(2)求證:.25.(10分)已知:如圖,四邊形ABCD的對角線AC和BD相交于點E,AD=DC,DC2=DE?DB,求證:(1)△BCE∽△ADE;(2)AB?BC=BD?BE.26.(10分)實行垃圾分類和垃圾資源化利用,關(guān)系廣大人民群眾生活環(huán)境,關(guān)系節(jié)約使用資源,也是社會文明水平的一個重要體現(xiàn).某環(huán)保公司研發(fā)了甲、乙兩種智能設(shè)備,可利用最新技術(shù)將干垃圾進行分選破碎制成固化成型燃料棒,干垃圾由此變身新型清潔燃料.某垃圾處理廠從環(huán)保公司購入以上兩種智能設(shè)備若干,已知購買甲型智能設(shè)備花費萬元,購買乙型智能設(shè)備花費萬元,購買的兩種設(shè)備數(shù)量相同,且兩種智能設(shè)備的單價和為萬元.求甲、乙兩種智能設(shè)備單價;垃圾處理廠利用智能設(shè)備生產(chǎn)燃料棒,并將產(chǎn)品出售.已知燃料棒的成本由人力成本和物資成本兩部分組成,其中物資成本占總成本的,且生產(chǎn)每噸燃料棒所需人力成本比物資成本的倍還多元.調(diào)查發(fā)現(xiàn),若燃料棒售價為每噸元,平均每天可售出噸,而當銷售價每降低元,平均每天可多售出噸.垃圾處理廠想使這種燃料棒的銷售利潤平均每天達到元,且保證售價在每噸元基礎(chǔ)上降價幅度不超過,求每噸燃料棒售價應(yīng)為多少元?

參考答案一、選擇題(每小題3分,共30分)1、A【分析】根據(jù)頂點式的特點可直接寫出頂點坐標.【題目詳解】因為y=(x-1)2+3是拋物線的頂點式,根據(jù)頂點式的坐標特點可知,頂點坐標為(1,3).故選A.【題目點撥】本題考查了二次函數(shù)的性質(zhì):頂點式y(tǒng)=a(x-h)2+k,頂點坐標是(h,k),對稱軸是x=h,此題考查了學生的應(yīng)用能力.2、D【解題分析】A、A盤轉(zhuǎn)出藍色的概率為、B盤轉(zhuǎn)出藍色的概率為,此選項錯誤;B、如果A轉(zhuǎn)盤轉(zhuǎn)出了藍色,那么B轉(zhuǎn)盤轉(zhuǎn)出藍色的可能性不變,此選項錯誤;C、由于A、B兩個轉(zhuǎn)盤是相互獨立的,先轉(zhuǎn)動A轉(zhuǎn)盤再轉(zhuǎn)動B轉(zhuǎn)盤和同時轉(zhuǎn)動兩個轉(zhuǎn)盤,游戲者配成紫色的概率相同,此選項錯誤;D、畫樹狀圖如下:由于共有6種等可能結(jié)果,而出現(xiàn)紅色和藍色的只有1種,所以游戲者配成紫色的概率為,故選D.3、B【分析】設(shè)第n秒運動到Pn(n為自然數(shù))點,根據(jù)點P的運動規(guī)律找出部分Pn點的坐標,根據(jù)坐標的變化找出變化規(guī)律“P4n+1(,),P4n+2(n+1,0),P4n+3(,﹣),P4n+4(2n+2,0)”,依此規(guī)律即可得出結(jié)論.【題目詳解】解:設(shè)第n秒運動到Pn(n為自然數(shù))點,觀察,發(fā)現(xiàn)規(guī)律:P1(,),P2(1,0),P3(,﹣),P4(2,0),P5(,),…,∴P4n+1(,),P4n+2(n+1,0),P4n+3(,﹣),P4n+4(2n+2,0).∵2019=4×504+3,∴P2019為(,﹣),故答案為B.【題目點撥】本題考查了規(guī)律型中的點的坐標,解題的關(guān)鍵是找出變化規(guī)律并根據(jù)規(guī)律找出點的坐標.4、A【解題分析】過C作CE⊥y軸于E,∵四邊形ABCD是矩形,∴CD=AB,∠ADC=90°,∴∠ADO+∠CDE=∠CDE+∠DCE=90°,∴∠DCE=∠ADO,∴△CDE∽△ADO,∴,∵OD=2OA=6,AD:AB=3:1,∴OA=3,CD:AD=,∴CE=OD=2,DE=OA=1,∴OE=7,∴C(2,7),故選A.5、C【分析】首先根據(jù)特殊角的三角函數(shù)值求出∠C,∠A的度數(shù),然后根據(jù)三角形的內(nèi)角和公式求出∠B的大?。绢}目詳解】∵,,∴∠C=30°,∠A=30°,∴∠B=180°﹣30°﹣30°=120°.故選C.【題目點撥】本題考查了特殊角的三角函數(shù)值,解答本題的關(guān)鍵是掌握幾個特殊角的三角函數(shù)值以及三角形的內(nèi)角和公式.6、D【分析】分兩種情況討論:AB與C點在圓心同側(cè),AB與C點在圓心兩側(cè),根據(jù)翻折的性質(zhì)及垂徑定理和勾股定理計算即可.【題目詳解】如圖:E是弦AB的中點是直角三角形,沿著弦AB進行翻折得到在中如圖:E是弦AB的中點是直角三角形沿著弦AB進行翻折得到在中故選:D【題目點撥】本題考查的是垂徑定理,掌握翻折的性質(zhì)及垂徑定理并能正確的進行分類討論畫出圖形是關(guān)鍵.7、B【分析】分兩種情況:①16為斜邊長;②16和12為兩條直角邊長,由勾股定理易求得此直角三角形的斜邊長,進而可求得外接圓的半徑.【題目詳解】解:由勾股定理可知:①當直角三角形的斜邊長為16時,這個三角形的外接圓半徑為8;②當兩條直角邊長分別為16和12,則直角三角形的斜邊長=因此這個三角形的外接圓半徑為1.綜上所述:這個三角形的外接圓半徑等于8或1.故選:B.【題目點撥】本題考查的是三角形的外接圓與外心,掌握直角三角形的外接圓是以斜邊中點為圓心,斜邊長的一半為半徑的圓是解題的關(guān)鍵.8、D【分析】根據(jù)旋轉(zhuǎn)角的定義,兩對應(yīng)邊的夾角就是旋轉(zhuǎn)角,即可求解.【題目詳解】解:旋轉(zhuǎn)角是故選:D.【題目點撥】本題考查的是旋轉(zhuǎn)的性質(zhì),掌握對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角是解題的關(guān)鍵.9、C【分析】先利用判別式的意義得到m>-,再根據(jù)根與系數(shù)的關(guān)系的x1+x2=-(2m+1),x1x2=m2-1,則(x1+x2)2-x1x2-17=0,所以(2m+1)2-(m2-1)-17=0,然后解關(guān)于m的方程,最后確定滿足條件的m的值.【題目詳解】解:根據(jù)題意得△=(2m+1)2﹣4(m2﹣1)>0,解得m>﹣,根據(jù)根與系數(shù)的關(guān)系的x1+x2=﹣(2m+1),x1x2=m2﹣1,∵,∴(x1+x2)2﹣x1x2﹣17=0,∴(2m+1)2﹣(m2﹣1)﹣17=0,整理得3m2+4m﹣15=0,解得m1=,m2=﹣3,∵m>﹣,∴m的值為.故選:C.【題目點撥】本題考查了根與系數(shù)的關(guān)系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根時,x1+x2=-,x1x2=.也考查了根的判別式.10、D【解題分析】分析:根據(jù)題目中的函數(shù)解析式可以判斷各個選項中的結(jié)論是否成立,從而可以解答本題.詳解:∵y=2x2+4x-1=2(x+1)2-3,∴當x=0時,y=-1,故選項A錯誤,該函數(shù)的對稱軸是直線x=-1,故選項B錯誤,當x<-1時,y隨x的增大而減小,故選項C錯誤,當x=-1時,y取得最小值,此時y=-3,故選項D正確,故選D.點睛:本題考查二次函數(shù)的性質(zhì)、二次函數(shù)的最值,解答本題的關(guān)鍵是明確題意,利用二次函數(shù)的性質(zhì)解答.二、填空題(每小題3分,共24分)11、【分析】利用反比例函數(shù)圖象的性質(zhì)即可得.【題目詳解】由反比例函數(shù)圖象的性質(zhì)得:解得:.【題目點撥】本題考查了反比例函數(shù)圖象的性質(zhì),對于反比例函數(shù)有:(1)當時,函數(shù)圖象位于第一、三象限,且在每一象限內(nèi),y隨x的增大而減?。唬?)當時,函數(shù)圖象位于第二、四象限,且在每一象限內(nèi),y隨x的增大而增大.12、【分析】先降次,再利用韋達定理計算即可得出答案.【題目詳解】∵的一元二次方程的二根為∴∴又,代入得解得:m=故答案為.【題目點撥】本題考查的是一元二次方程根與系數(shù)的關(guān)系,若的一元二次方程的二根為,則,.13、【分析】先求出瓷磚的總數(shù),再求出白色瓷磚的個數(shù),利用概率公式即可得出結(jié)論.【題目詳解】由圖可知,共有5塊瓷磚,白色的有3塊,所以它停在白色地磚上的概率=.考點:概率.14、1【解題分析】h=10t-5t1=-5(t-1)1+10,∵-5<0,∴函數(shù)有最大值,則當t=1時,球的高度最高.故答案為1.15、或【分析】由平行四邊形的性質(zhì)得出∠B=∠D=30°,CD=AB=6,AD=BC=6,作CH⊥AD于H,則CH=CD=3,DH=CH=3=AD,得出AH=DH,由線段垂直平分線的性質(zhì)得出CA=CD=AB=6,由等腰三角形的性質(zhì)得出∠ACB=∠B=30°,由平行線的性質(zhì)得出∠BFG=∠ACB=30°,分兩種情況:①作EM⊥BF于M,在BF上截取EN=BE=3,則∠ENB=∠B=30°,由直角三角形的性質(zhì)得出EM=BE=,BM=NM=EM=,得出BN=2BM=3,再證出FN=EN=3,即可得出結(jié)果;②作EM⊥BC于M,在BC上截取EN=BE=3,連接EN,則∠ENB=∠B=30°,得出EN∥AC,EM=BE=,BM=NM=EM=,BN=2BM=3,證出FG∥EN,則∠G=∠GEN,證出∠GEN=∠ENB=∠B=∠G=30°,推出∠BEN=120°,得出∠BEG=120°﹣∠GEN=90°,由折疊的性質(zhì)得∠BEF=∠GEF=∠BEG=45°,證出∠NEF=∠NFE,則FN=EN=3,即可得出結(jié)果.【題目詳解】解:∵四邊形ABCD是平行四邊形,∴∠B=∠D=30°,CD=AB=6,AD=BC=6,作CH⊥AD于H,則CH=CD=3,DH=CH=3=AD,∴AH=DH,∴CA=CD=AB=6,∴∠ACB=∠B=30°,∵FG∥AC,∴∠BFG=∠ACB=30°,∵點E是AB邊的中點,∴BE=3,分兩種情況:①作EM⊥BF于M,在BF上截取EN=BE=3,連接EN,如圖1所示:則∠ENB=∠B=30°,∴EM=BE=,BM=NM=EM=,∴BN=2BM=3,由折疊的性質(zhì)得:∠BFE=∠GFE=15°,∵∠NEF=∠ENB﹣∠BFE=15°=∠BFE,∴FN=EN=3,∴BF=BN+FN=3+3;②作EM⊥BC于M,在BC上截取EN=BE=3,連接EN,如圖2所示:則∠ENB=∠B=30°,∴EN∥AC,EM=BE=,BM=NM=EM=,∴BN=2BM=3,∵FG∥AC,∴FG∥EN,∴∠G=∠GEN,由折疊的性質(zhì)得:∠B=∠G=30°,∴∠GEN=∠ENB=∠B=∠G=30°,∵∠BEN=180°﹣∠B﹣∠ENB=180°﹣30°﹣30°=120°,∴∠BEG=120°﹣∠GEN=120°﹣30°=90°,由折疊的性質(zhì)得:∠BEF=∠GEF=∠BEG=45°,∴∠NEF=∠NEG+∠GEF=30°+45°=75°,∠NFE=∠BEF+∠B=45°+30°=75°,∴∠NEF=∠NFE,∴FN=EN=3,∴BF=BN﹣FN=3﹣3;故答案為:或.【題目點撥】本題考查了翻折變換的性質(zhì)、平行四邊形的性質(zhì)、直角三角形的性質(zhì)、線段垂直平分線的性質(zhì)、等腰三角形的性質(zhì)等知識;掌握翻折變換的性質(zhì)和等腰三角形的性質(zhì)是解答本題的關(guān)鍵.16、1【分析】①四邊形ABCD是矩形,BE⊥AC,則∠ABC=∠AFB=90°,又∠BAF=∠CAB,于是△AEF∽△CAB,故①正確;②由AE=AD=BC,又AD∥BC,所以==,故②正確;③過D作DM∥BE交AC于N,得到四邊形BMDE是平行四邊形,求出BM=DE=BC,得到CN=NF,根據(jù)線段的垂直平分線的性質(zhì)可得結(jié)論,故③正確;④根據(jù)△AEF∽△CBF得到,求出S△AEF=S△ABF,S△ABF=S矩形ABCDS四邊形CDEF=S△ACD﹣S△AEF=S矩形ABCD﹣S矩形ABCD=S矩形ABCD,即可得到S四邊形CDEF=S△ABF,故④正確.【題目詳解】解:過D作DM∥BE交AC于N,∵四邊形ABCD是矩形,∴AD∥BC,∠ABC=90°,AD=BC,∵BE⊥AC于點F,∴∠EAC=∠ACB,∠ABC=∠AFE=90°,∴△AEF∽△CAB,故①正確;∵AD∥BC,∴△AEF∽△CBF,∴==,∵AE=AD=BC,∴=,∴CF=2AF,故②正確,∵DE∥BM,BE∥DM,∴四邊形BMDE是平行四邊形,∴BM=DE=BC,∴BM=CM,∴CN=NF,∵BE⊥AC于點F,DM∥BE,∴DN⊥CF,∴DF=DC,故③正確;∵△AEF∽△CBF,∴,∴S△AEF=S△ABF,S△ABF=S矩形ABCD∴S△AEF=S矩形ABCD,又∵S四邊形CDEF=S△ACD﹣S△AEF=S矩形ABCD﹣S矩形ABCD=S矩形ABCD,∴S四邊形CDEF=S△ABF,故④正確;故答案為:1.【題目點撥】本題考查了相似三角形的判定和性質(zhì),矩形的性質(zhì),圖形面積的計算,正確的作出輔助線,根據(jù)相似三角形表示出圖形面積之間關(guān)系是解題的關(guān)鍵.17、1【分析】由a+b2=2得出b2=2-a,代入a2+5b2得出a2+5b2=a2+5(2-a)=a2-5a+10,再利用配方法化成a2+5b2=(a-,即可求出其最小值.【題目詳解】∵a+b2=2,

∴b2=2-a,a≤2,

∴a2+5b2=a2+5(2-a)=a2-5a+10=(a-,

當a=2時,

a2+b2可取得最小值為1.

故答案是:1.【題目點撥】考查了二次函數(shù)的最值,解題關(guān)鍵是根據(jù)題意得出a2+5b2=(a-.18、100(1+x)2=1.【題目詳解】設(shè)平均每次提價的百分率為x,根據(jù)原價為100元,表示出第一次提價后的價錢為100(1+x)元,第二次提價的價錢為100(1+x)2元,根據(jù)兩次提價后的價錢為1元,列出關(guān)于x的方程100(1+x)2=1.考點:一元二次方程的應(yīng)用.三、解答題(共66分)19、(1)無人機的高約為19m;(2)無人機的平均速度約為5米/秒或26米/秒【分析】(1)如圖,過點作,垂足為點,設(shè),則.解直角三角形即可得到結(jié)論;(2)過點作,垂足為點,解直角三角形即可得到結(jié)論.【題目詳解】解:(1)如圖,過點作,垂足為點.∵,∴.設(shè),則.∵在Rt△ACH中,,∴.∴.解得:∴.答:計算得到的無人機的高約為19m.(2)過點F作,垂足為點.在Rt△AGF中,.FG=CH=18,∴.又.∴或.答:計算得到的無人機的平均速度約為5米/秒或26米/秒.【題目點撥】本題考查解直角三角形的應(yīng)用,解題的關(guān)鍵是學會添加常用輔助線,構(gòu)造直角三角形解決問題,屬于中考常考題型.20、(1)一次函數(shù)表達式為y=-x-1;反比例函數(shù)表達式為y=-;(2)點P的坐標是(-3,0)或(1,0);(3)-3<x<0或x>0【分析】(1)將A坐標代入雙曲線解析式中求出m的值,確定出雙曲線的解析式,再將A與B坐標代入一次函數(shù)解析式中求出k與b的值,即可確定出一次函數(shù)解析式;(2)求得直線與x軸的交點是(-1,0),設(shè)點P的坐標是(a,0),則的底為|a+1|,利用三角形面積公式即可求得點P的坐標;(3)根據(jù)一次函數(shù)與反比例函數(shù)的兩交點A與B的橫坐標以及0,將x軸分為四個范圍,找出反比例圖象在一次函數(shù)圖象上方時x的范圍即可.【題目詳解】(1)∵雙曲線(m≠0)過點A(-3,2),∴m=-3×2=-6,∴反比例函數(shù)表達式為.∵點B(n,-3)在反比例函數(shù)的圖象上,∴n=2,B(2,-3).∵點A(-3,2)與點B(2,-3)在直線y=kx+b上,∴解得∴一次函數(shù)表達式為y=-x-1;(2)如解圖,在x軸上任取一點P,連接AP,BP,由(1)知點B的坐標是(2,-3).在y=-x-1中令y=0,解得x=-1,則直線與x軸的交點是(-1,0).設(shè)點P的坐標是(a,0).∵△ABP的面積是5,∴·|a+1|·(2+3)=5,則|a+1|=2,解得a=-3或1.則點P的坐標是(-3,0)或(1,0).(3)根據(jù)圖象得:-3<x<0或x>0【題目點撥】此題考查了一次函數(shù)與反比例函數(shù)的交點問題,利用了待定系數(shù)法及數(shù)形結(jié)合的思想,熟練掌握待定系數(shù)法是解本題的關(guān)鍵.21、此車超速,理由見解析.【分析】解直角三角形得到AB=OA-OB=73米,求得此車的速度≈86千米/小時>80千米/小時,于是得到結(jié)論.【題目詳解】解:此車超速,理由:∵∠POB=90°,∠PBO=45°,∴△POB是等腰直角三角形,∴OB=OP=100米,∵∠APO=60°,∴OA=OP=100≈173米,∴AB=OA﹣OB=73米,∴≈24米/秒≈86千米/小時>80千米/小時,∴此車超速.【題目點撥】本題考查解直角三角形的應(yīng)用問題.此題難度適中,解題關(guān)鍵是把實際問題轉(zhuǎn)化為數(shù)學問題求解,注意數(shù)形結(jié)合思想的應(yīng)用.22、,1【分析】原式括號中兩項通分并利用同分母分式的減法法則計算,同時利用除法法則變形,約分得到最簡結(jié)果,將的值代入計算即可求出值.【題目詳解】;當時,原式.【題目點撥】本題主要考查分式的化簡求值,解題的關(guān)鍵是掌握分式混合運算順序和運算法則.23、選擇A轉(zhuǎn)盤.理由見解析【解題分析】試題分析:由題意可以畫出樹狀圖,然后根據(jù)樹狀圖求得到所有等可能的結(jié)果,找全滿足條件的所有情況,再利用概率公式即可求得答案.試題解析:選擇A轉(zhuǎn)盤.畫樹狀圖得:∵共有9種等可能的結(jié)果,A大于B的有5種情況,A小于B的有4種情況,∴P(A大于B)=,P(A小于B)=,∴選擇A轉(zhuǎn)盤.考

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論