江蘇省無錫市江陰市暨陽中學2024屆九年級數學第一學期期末檢測試題含解析_第1頁
江蘇省無錫市江陰市暨陽中學2024屆九年級數學第一學期期末檢測試題含解析_第2頁
江蘇省無錫市江陰市暨陽中學2024屆九年級數學第一學期期末檢測試題含解析_第3頁
江蘇省無錫市江陰市暨陽中學2024屆九年級數學第一學期期末檢測試題含解析_第4頁
江蘇省無錫市江陰市暨陽中學2024屆九年級數學第一學期期末檢測試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江蘇省無錫市江陰市暨陽中學2024屆九年級數學第一學期期末檢測試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每題4分,共48分)1.已知:如圖,矩形ABCD中,AB=2cm,AD=3cm.點P和點Q同時從點A出發(fā),點P以3cm/s的速度沿A→D方向運動到點D為止,點Q以2cm/s的速度沿A→B→C→D方向運動到點D為止,則△APQ的面積S(cm2)與運動時間t(s)之間函數關系的大致圖象是()A. B.C. D.2.下列說法正確的是()A.了解我市市民知曉“禮讓行人”交通新規(guī)的情況,適合全面調查B.甲、乙兩人跳遠成績的方差分別為,,說明乙的跳遠成績比甲穩(wěn)定C.一組數據2,2,3,4的眾數是2,中位數是2.5D.可能性是1%的事件在一次試驗中一定不會發(fā)生3.學生作業(yè)本每頁大約為7.5忽米(1厘米=1000忽米),請用科學計數法將7.5忽米記為米,則正確的記法為()A.7.5×105米 B.0.75×106米 C.0.75×10-4米 D.4.定義:在等腰三角形中,底邊與腰的比叫做頂角的正對,頂角的正對記作,即底邊:腰.如圖,在中,,.則()A. B. C. D.5.關于反比例函數y=,下列說法中錯誤的是()A.它的圖象是雙曲線B.它的圖象在第一、三象限C.y的值隨x的值增大而減小D.若點(a,b)在它的圖象上,則點(b,a)也在它的圖象上6.如圖,正方形ABCD的邊長為3cm,動點P從B點出發(fā)以3cm/s的速度沿著邊BC﹣CD﹣DA運動,到達A點停止運動;另一動點Q同時從B點出發(fā),以1cm/s的速度沿著邊BA向A點運動,到達A點停止運動.設P點運動時間為x(s),△BPQ的面積為y(cm2),則y關于x的函數圖象是()A. B. C. D.7.如圖,在△ABC中,cosB=,sinC=,AC=5,則△ABC的面積是()A. B.12 C.14 D.218.某商場對上周女裝的銷售情況進行了統計,如下表,經理決定本周進女裝時多進一些紅色的,可用來解釋這一現象的統計知識是()顏色黃色綠色白色紫色紅色數量(件)10018022080520A.平均數 B.中位數 C.眾數 D.方差9.小廣,小嬌分別統計了自己近5次數學測試成績,下列統計量中能用來比較兩人成績穩(wěn)定性的是()A.方差 B.平均數 C.眾數 D.中位數10.二次函數的大致圖象如圖所示,其對稱軸為直線,點A的橫坐標滿足,圖象與軸相交于兩點,與軸相交于點.給出下列結論:①;②;③若,則;④.其中正確的個數是()A.1 B.2 C.3 D.411.已知與各邊相切于點,,則的半徑()A. B. C. D.12.如圖,點A、B、C在⊙O上,若∠BAC=45°,OB=2,則圖中陰影部分的面積為()A.π﹣2 B. C.π﹣4 D.二、填空題(每題4分,共24分)13.漢代數學家趙爽在注解《周髀算經》時給出的“趙爽弦圖”是我國古代數學的瑰寶.如圖所示的弦圖中,四個直角三角形都是全等的,它們的兩直角邊之比均為,現隨機向該圖形內擲一枚小針,則針尖落在陰影區(qū)域的概率為__________.14.若關于x的方程kx2+2x﹣1=0有實數根,則k的取值范圍是_____.15.分解因式:___.16.如圖拋物線y=ax2+bx+c的對稱軸是x=﹣1,與x軸的一個交點為(﹣5,0),則不等式ax2+bx+c>0的解集為_____.17.如果將拋物線向上平移,使它經過點那么所得新拋物線的解析式為____________.18.已知x=1是一元二次方程x2﹣3x+a=0的一個根,則方程的另一個根為_____.三、解答題(共78分)19.(8分)如圖①,在等腰△ABC和△ADE中,AB=AC,AD=AE,且∠BAC=∠DAE=120°.(1)求證:△ABD≌△ACE;(2)把△ADE繞點A逆時針方向旋轉到圖②的位置,連接CD,點M、P、N分別為DE、DC、BC的中點,連接MN、PN、PM,判斷△PMN的形狀,并說明理由;(3)在(2)中,把△ADE繞點A在平面內自由旋轉,若AD=4,AB=6,請分別求出△PMN周長的最小值與最大值.20.(8分)如圖,反比例函數的圖象與一次函數的圖象相交于點和點.(1)求反比例函數的解析式和點的坐標;(2)連接,,求的面積.(3)結合圖象,請直接寫出使反比例函數值小于一次函數值的自變量的取值范圍.21.(8分)閱讀理解:如圖,在紙面上畫出了直線l與⊙O,直線l與⊙O相離,P為直線l上一動點,過點P作⊙O的切線PM,切點為M,連接OM、OP,當△OPM的面積最小時,稱△OPM為直線l與⊙O的“最美三角形”.解決問題:(1)如圖1,⊙A的半徑為1,A(0,2),分別過x軸上B、O、C三點作⊙A的切線BM、OP、CQ,切點分別是M、P、Q,下列三角形中,是x軸與⊙A的“最美三角形”的是.(填序號)①ABM;②AOP;③ACQ(2)如圖2,⊙A的半徑為1,A(0,2),直線y=kx(k≠0)與⊙A的“最美三角形”的面積為,求k的值.(3)點B在x軸上,以B為圓心,為半徑畫⊙B,若直線y=x+3與⊙B的“最美三角形”的面積小于,請直接寫出圓心B的橫坐標的取值范圍.22.(10分)如圖,點B、D、E在一條直線上,BE交AC于點F,,且∠BAD=∠CAE.(1)求證:△ABC∽△ADE;(2)求證:△AEF∽△BFC.23.(10分)如圖,菱形ABCD的對角線AC,BD相交于點O,分別延長OA,OC到點E,F,使AE=CF,依次連接B,F,D,E各點.(1)求證:△BAE≌△BCF;(2)若∠ABC=50°,則當∠EBA=°時,四邊形BFDE是正方形.24.(10分)如圖,在中,平分交于點,于點,交于點,連接.(1)求證:四邊形是菱形;(2)連接,若,,,求的長.25.(12分)為吸引市民組團去風景區(qū)旅游,觀光旅行社推出了如下收費標準:某單位員工去風景區(qū)旅游,共支付給旅行社旅游費用10500元,請問該單位這次共有多少員工去風景區(qū)旅游?26.某水果超市第一次花費2200元購進甲、乙兩種水果共350千克.已知甲種水果進價每千克5元,售價每千克10元;乙種水果進價每千克8元,售價每千克12元.(1)第一次購進的甲、乙兩種水果各多少千克?(2)由于第一次購進的水果很快銷售完畢,超市決定再次購進甲、乙兩種水果,它們的進價不變.若要本次購進的水果銷售完畢后獲得利潤2090元,甲種水果進貨量在第一次進貨量的基礎上增加了2m%,售價比第一次提高了m%;乙種水果的進貨量為100千克,售價不變.求m的值.

參考答案一、選擇題(每題4分,共48分)1、C【分析】研究兩個動點到矩形各頂點時的時間,分段討論求出函數解析式即可求解.【題目詳解】解:分三種情況討論:(1)當0≤t≤1時,點P在AD邊上,點Q在AB邊上,∴S=,∴此時拋物線經過坐標原點并且開口向上;(1)當1<t≤1.5時,點P與點D重合,點Q在BC邊上,∴S==2,∴此時,函數值不變,函數圖象為平行于t軸的線段;(2)當1.5<t≤2.5時,點P與點D重合,點Q在CD邊上,∴S=×2×(7﹣1t))=﹣t+.∴函數圖象是一條線段且S隨t的增大而減?。蔬x:C.【題目點撥】本題考查了二次函數與幾何問題,用分類討論的數學思想解題是關鍵,解答時注意研究動點到達臨界點時的時間以此作為分段的標準,逐一分析求解.2、C【分析】全面調查與抽樣調查的優(yōu)缺點:全面調查收集的數據全面、準確,但一般花費多、耗時長,而且某些調查不宜用全面調查.抽樣調查具有花費少、省時的特點,但抽取的樣本是否具有代表性,直接關系到對總體估計的準確程度.將一組數據按照從小到大(或從大到?。┑捻樞蚺帕?,如果數據的個數是奇數,則處于中間位置的數就是這組數據的中位數.如果數據的個數是偶數,中間兩數的平均數就是中位數,一組數據中出現次數最多的數據叫做眾數.【題目詳解】解:A.了解我市市民知曉“禮讓行人”交通新規(guī)的情況,適合抽樣調查,A錯誤;B.甲、乙兩人跳遠成績的方差分別為,,說明甲的跳遠成績比乙穩(wěn)定,B錯誤;C.一組數據,,,的眾數是,中位數是,正確;D.可能性是的事件在一次試驗中可能會發(fā)生,D錯誤.故選C.【題目點撥】本題考查了統計的應用,正確理解概率的意義是解題的關鍵.3、D【分析】小于1的正數也可以利用科學記數法表示,一般形式為a×10-n,與較大數的科學記數法不同的是其所使用的是負指數冪,指數由原數左邊起第一個不為零的數字前面的0的個數所決定.【題目詳解】解:7.5忽米用科學記數法表示7.5×10-5米.

故選D.【題目點撥】本題考查用科學記數法表示較小的數,一般形式為a×10-n,其中1≤|a|<10,n為由原數左邊起第一個不為零的數字前面的0的個數所決定.4、C【分析】證明△ABC是等腰直角三角形即可解決問題.【題目詳解】解:∵AB=AC,

∴∠B=∠C,

∵∠A=2∠B,

∴∠B=∠C=45°,∠A=90°,

∴在Rt△ABC中,BC==AC,

∴sin∠B?sadA=,故選:C.【題目點撥】本題考查解直角三角形,等腰直角三角形的判定和性質三角函數等知識,解題的關鍵是理解題意,靈活運用所學知識解決問題,屬于中考??碱}型.5、C【分析】根據反比例函數y=的圖象上點的坐標特征,以及該函數的圖象的性質進行分析、解答.【題目詳解】A.反比例函數的圖像是雙曲線,正確;B.k=2>0,圖象位于一、三象限,正確;C.在每一象限內,y的值隨x的增大而減小,錯誤;D.∵ab=ba,∴若點(a,b)在它的圖像上,則點(b,a)也在它的圖像上,故正確.故選C.【題目點撥】本題主要考查反比例函數的性質.注意:反比例函數的增減性只指在同一象限內.6、C【解題分析】試題分析:由題意可得BQ=x.①0≤x≤1時,P點在BC邊上,BP=3x,則△BPQ的面積=BP?BQ,解y=?3x?x=;故A選項錯誤;②1<x≤2時,P點在CD邊上,則△BPQ的面積=BQ?BC,解y=?x?3=;故B選項錯誤;③2<x≤3時,P點在AD邊上,AP=9﹣3x,則△BPQ的面積=AP?BQ,解y=?(9﹣3x)?x=;故D選項錯誤.故選C.考點:動點問題的函數圖象.7、A【分析】根據已知作出三角形的高線AD,進而得出AD,BD,CD,的長,即可得出三角形的面積.【題目詳解】解:過點A作AD⊥BC,∵△ABC中,cosB=,sinC=,AC=5,

∴cosB==,

∴∠B=45°,

∵sinC===,

∴AD=3,

∴CD==4,

∴BD=3,

則△ABC的面積是:×AD×BC=×3×(3+4)=.

故選A.【題目點撥】此題主要考查了解直角三角形的知識,作出AD⊥BC,進而得出相關線段的長度是解決問題的關鍵.8、C【解題分析】在決定本周進女裝時多進一些紅色的,主要考慮的是各色女裝的銷售的數量,而紅色上周銷售量最大.【題目詳解】解:在決定本周進女裝時多進一些紅色的,主要考慮的是各色女裝的銷售的數量,而紅色上周銷售量最大.由于眾數是數據中出現次數最多的數,故考慮的是各色女裝的銷售數量的眾數.

故選:C.【題目點撥】反映數據集中程度的統計量有平均數、中位數、眾數方差等,各有局限性,因此要對統計量進行合理的選擇和恰當的運用.9、A【分析】根據方差的意義:體現數據的穩(wěn)定性,集中程度,波動性大??;方差越小,數據越穩(wěn)定.要比較兩位同學在五次數學測驗中誰的成績比較穩(wěn)定,應選用的統計量是方差.【題目詳解】平均數,眾數,中位數都是反映數字集中趨勢的數量,方差是反映數據離散水平的數據,也就會說反映數據穩(wěn)定程度的數據是方差故選A考點:方差10、C【分析】根據對稱軸的位置、開口方向、與y軸的交點可對①②④進行判斷,根據,轉化為代數,計算的值對③進行判斷即可.【題目詳解】解:①∵拋物線開口向下,∴,∵拋物線對稱軸為直線,∴,∴∴,故①正確,②∵,,∴,又∵拋物線與y軸交于負半軸,∴,∴,故②錯誤,③∵點C(0,c),,點A在x軸正半軸,∴A,代入得:,化簡得:,又∵,∴即,故③正確,④由②可得,當x=1時,,∴,即,故④正確,所以正確的是①③④,故答案為C.【題目點撥】本題考查了二次函數中a,b,c系數的關系,根據圖象得出a,b,c的的關系是解題的關鍵.11、C【分析】根據內切圓的性質,得到,AE=AD=5,BD=BF=2,CE=CF=3,作BG⊥AC于點G,然后求出BG的長度,利用面積相等即可求出內切圓的半徑.【題目詳解】解:如圖,連接OA、OB、OC、OD、OE、OF,作BG⊥AC于點G,∵是的內切圓,∴,AE=AD=5,BD=BF=2,CE=CF=3,∴AC=8,AB=7,BC=5,在Rt△BCG和Rt△ABG中,設CG=x,則AG=,由勾股定理,得:,∴,解得:,∴,∴,∵,∴;故選:C.【題目點撥】本題考查了三角形內切圓的性質,利用勾股定理解直角三角形,以及利用面積法求線段的長度,解題的關鍵是掌握三角形內切圓的性質,熟練運用三角形面積相等進行解題.12、A【分析】先證得三角形OBC是等腰直角三角形,通過解直角三角形求得BC和BC邊上的高,然后根據S陰影=S扇形OBC-S△OBC即可求得.【題目詳解】∵∠BAC=45°,∴∠BOC=90°,∴△OBC是等腰直角三角形,∵OB=2,∴△OBC的BC邊上的高為:,∴∴S陰影=S扇形OBC-S△OBC=,故選:A.【題目點撥】本題考查了扇形的面積公式:(n為圓心角的度數,R為圓的半徑).也考查了等腰直角三角形三邊的關系和三角形的面積公式.二、填空題(每題4分,共24分)13、【解題分析】分析:設勾為2k,則股為3k,弦為k,由此求出大正方形面積和陰影區(qū)域面積,由此能求出針尖落在陰影區(qū)域的概率.詳解:設勾為2k,則股為3k,弦為k,∴大正方形面積S=k×k=13k2,中間小正方形的面積S′=(3?2)k?(3?2)k=k2,故陰影部分的面積為:13k2-k2=12k2∴針尖落在陰影區(qū)域的概率為:.故答案為.點睛:此題主要考查了幾何概率問題,用到的知識點為:概率=相應的面積與總面積之比.14、k≥-1【解題分析】首先討論當時,方程是一元一次方程,有實數根,當時,利用根的判別式△=b2-4ac=4+4k≥0,兩者結合得出答案即可.【題目詳解】當時,方程是一元一次方程:,方程有實數根;當時,方程是一元二次方程,解得:且.綜上所述,關于的方程有實數根,則的取值范圍是.故答案為【題目點撥】考查一元二次方程根的判別式,注意分類討論思想在解題中的應用,不要忽略這種情況.15、.【分析】直接提取公因式即可【題目詳解】解:.故答案為:16、﹣5<x<1【分析】先根據拋物線的對稱性得到A點坐標(1,0),由y=ax2+bx+c>0得函數值為正數,即拋物線在x軸上方,然后找出對應的自變量的取值范圍即可得到不等式ax2+bx+c>0的解集.【題目詳解】解:根據圖示知,拋物線y=ax2+bx+c圖象的對稱軸是x=﹣1,與x軸的一個交點坐標為(﹣5,0),根據拋物線的對稱性知,拋物線y=ax2+bx+c圖象與x軸的兩個交點關于直線x=﹣1對稱,即拋物線y=ax2+bx+c圖象與x軸的另一個交點與(﹣5,0)關于直線x=﹣1對稱,∴另一個交點的坐標為(1,0),∵不等式ax2+bx+c>0,即y=ax2+bx+c>0,∴拋物線y=ax2+bx+c的圖形在x軸上方,∴不等式ax2+bx+c>0的解集是﹣5<x<1.故答案為﹣5<x<1.【題目點撥】此題主要考查了二次函數與不等式,解答此題的關鍵是求出圖象與x軸的交點,然后由圖象找出當y>0時,自變量x的范圍,本題鍛煉了學生數形結合的思想方法.17、【分析】設平移后的拋物線解析式為,把點A的坐標代入進行求值即可得到b的值.【題目詳解】解:設平移后的拋物線解析式為,把A(0,3)代入,得3=?1+b,解得b=4,則該函數解析式為.故答案為:.【題目點撥】主要考查了函數圖象的平移,要求熟練掌握平移的規(guī)律:左加右減,上加下減.并用規(guī)律求函數解析式.會利用方程求拋物線與坐標軸的交點.18、【解題分析】設方程另一個根為x,根據根與系數的關系得,然后解一次方程即可.【題目詳解】設方程另一個根為x,根據題意得x+1=3,解得x=2.故答案為:x=2.【題目點撥】本題主要考查一元二次方程根與系數的關系,熟記公式是解決本題的關鍵.三、解答題(共78分)19、(1)證明見解析;(2)△PMN是等邊三角形.理由見解析;(3)△PMN周長的最小值為3,最大值為1.【解題分析】分析:(1)由∠BAC=∠DAE=120°,可得∠BAD=∠CAE,再由AB=AC,AD=AE,利用SAS即可判定△ABD≌△ADE;(2)△PMN是等邊三角形,利用三角形的中位線定理可得PM=CE,PM∥CE,PN=BD,PN∥BD,同(1)的方法可得BD=CE,即可得PM=PN,所以△PMN是等腰三角形;再由PM∥CE,PN∥BD,根據平行線的性質可得∠DPM=∠DCE,∠PNC=∠DBC,因為∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,所以∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,再由∠BAC=120°,可得∠ACB+∠ABC=60°,即可得∠MPN=60°,所以△PMN是等邊三角形;(3)由(2)知,△PMN是等邊三角形,PM=PN=BD,所以當PM最大時,△PMN周長最大,當點D在AB上時,BD最小,PM最小,求得此時BD的長,即可得△PMN周長的最小值;當點D在BA延長線上時,BD最大,PM的值最大,此時求得△PMN周長的最大值即可.詳解:(1)因為∠BAC=∠DAE=120°,所以∠BAD=∠CAE,又AB=AC,AD=AE,所以△ABD≌△ADE;(2)△PMN是等邊三角形.理由:∵點P,M分別是CD,DE的中點,∴PM=CE,PM∥CE,∵點N,M分別是BC,DE的中點,∴PN=BD,PN∥BD,同(1)的方法可得BD=CE,∴PM=PN,∴△PMN是等腰三角形,∵PM∥CE,∴∠DPM=∠DCE,∵PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=120°,∴∠ACB+∠ABC=60°,∴∠MPN=60°,∴△PMN是等邊三角形.(3)由(2)知,△PMN是等邊三角形,PM=PN=BD,∴PM最大時,△PMN周長最大,∴點D在AB上時,BD最小,PM最小,∴BD=AB-AD=2,△PMN周長的最小值為3;點D在BA延長線上時,BD最大,PM最大,∴BD=AB+AD=10,△PMN周長的最大值為1.故答案為△PMN周長的最小值為3,最大值為1點睛:本題主要考查了全等三角形的判定及性質、三角形的中位線定理、等邊三角形的判定,解決第(3)問,要明確點D在AB上時,BD最小,PM最小,△PMN周長的最小;點D在BA延長線上時,BD最大,PM最大,△PMN周長的最大值為1.20、(1),點的坐標為;(2);(3)或.【分析】(1)利用待定系數法求解析式,令y值相等求點B坐標;(2)數形結合求面積;(3)數形結合,利用圖像解不等式【題目詳解】解:(1)把代入得,∴.∴反比例函數的解析式為.聯立解得∴點的坐標為.(2)設直線與軸交于點.可知點的坐標為,∴.∴.(3)當或時,反比例函數值小于一次函數值.【題目點撥】本題考查了反比例函數和一次函數的綜合應用,數形結合思想是解題的關鍵21、(1)②;(2)±1;(3)<<或<<【分析】(1)本題先利用切線的性質,結合勾股定理以及三角形面積公式將面積最值轉化為線段最值,了解最美三角形的定義,根據圓心到直線距離最短原則解答本題.(2)本題根據k的正負分類討論,作圖后根據最美三角形的定義求解EF,利用勾股定理求解AF,進一步確定∠AOF度數,最后利用勾股定理確定點F的坐標,利用待定系數法求k.(3)本題根據⊙B在直線兩側不同位置分類討論,利用直線與坐標軸的交點坐標確定∠NDB的度數,繼而按照最美三角形的定義,分別以△BND,△BMN為媒介計算BD長度,最后與OD相減求解點B的橫坐標范圍.【題目詳解】(1)如下圖所示:∵PM是⊙O的切線,∴∠PMO=90°,當⊙O的半徑OM是定值時,,∵,∴要使面積最小,則PM最小,即OP最小即可,當OP⊥時,OP最小,符合最美三角形定義.故在圖1三個三角形中,因為AO⊥x軸,故△AOP為⊙A與x軸的最美三角形.故選:②.(2)①當k<0時,按題意要求作圖并在此基礎作FM⊥x軸,如下所示:按題意可得:△AEF是直線y=kx與⊙A的最美三角形,故△AEF為直角三角形且AF⊥OF.則由已知可得:,故EF=1.在△AEF中,根據勾股定理得:.∵A(0,2),即OA=2,∴在直角△AFO中,,∴∠AOF=45°,即∠FOM=45°,故根據勾股定理可得:MF=MO=1,故F(-1,1),將F點代入y=kx可得:.②當k>0時,同理可得k=1.故綜上:.(3)記直線與x、y軸的交點為點D、C,則,,①當⊙B在直線CD右側時,如下圖所示:在直角△COD中,有,,故,即∠ODC=60°.∵△BMN是直線與⊙B的最美三角形,∴MN⊥BM,BN⊥CD,即∠BND=90°,在直角△BDN中,,故.∵⊙B的半徑為,∴.當直線CD與⊙B相切時,,因為直線CD與⊙B相離,故BN>,此時BD>2,所以OB=BD-OD>.由已知得:<,故MN<1.在直角△BMN中,<,此時可利用勾股定理算得BD<,<=,則<<.②當⊙B在直線CD左側時,同理可得:<<.故綜上:<<或<<.【題目點撥】本題考查圓與直線的綜合問題,屬于創(chuàng)新題目,此類型題目解題關鍵在于了解題干所給示例,涉及動點問題時必須分類討論,保證不重不漏,題目若出現最值問題,需要利用轉化思想將面積或周長最值轉化為線段最值以降低解題難度,求解幾何線段時勾股定理極為常見.22、(1)見解析;(2)見解析【分析】(1)由已知先證明∠BAC=∠DAE,繼而根據兩邊對應成比例且夾角相等即可得結論;(2)根據相似三角形的性質定理得到∠C=∠E,結合圖形,證明即可.【題目詳解】證明:如圖,(1)∵∠BAD=∠CAE∴∠BAD+∠CAD=∠CAE+∠CAD即∠BAC=∠DAE在△ABC和△ADE中,∠BAC=∠DAE,∴△ABC∽△ADE;(2)∵△ABC∽△ADE,∴∠C=∠E,在△AEF和△BFC中,∠C=∠E,∠AFE=∠BFC,∴△AEF∽△BFC.【題目點撥】本題考查的是相似三角形的判定和性質,掌握相似三角形的判定定理和性質定理是解題的關鍵.23、(1)證明見試題解析;(2)1.【分析】(1)先證∠BAE=∠BCF,又由BA=BC,AE=CF,得到△BAE≌△BCF;(2)由已知可得四邊形BFDE對角線互相垂直平分,只要∠EBF=90°即得四邊形BFDE是正方形,由△BAE≌△BCF可知∠EBA=∠FBC,又由∠ABC=50°,可得∠EBA+∠FBC=40°,于是∠EBA=×40°=1°.【題目詳解】解:(1)∵菱形ABCD的對角線AC,BD相交于點O,∴AB=BC,∠BAC=∠BCA,∴∠BAE=∠BCF,在△BAE與△BCF中,∵BA=BC,∠BAE=∠BCF,AE=CF,∴△BAE≌△BCF(SAS);(2)∵四邊形BFDE對角線互相垂直平分,∴只要∠EBF=90°即得四邊形BFDE是正方形,∵△BAE≌△BCF,∴

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論