山東省濰坊諸城市第七中學2024屆九年級數(shù)學第一學期期末調研試題含解析_第1頁
山東省濰坊諸城市第七中學2024屆九年級數(shù)學第一學期期末調研試題含解析_第2頁
山東省濰坊諸城市第七中學2024屆九年級數(shù)學第一學期期末調研試題含解析_第3頁
山東省濰坊諸城市第七中學2024屆九年級數(shù)學第一學期期末調研試題含解析_第4頁
山東省濰坊諸城市第七中學2024屆九年級數(shù)學第一學期期末調研試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山東省濰坊諸城市第七中學2024屆九年級數(shù)學第一學期期末調研試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.如圖,CD是⊙O的直徑,已知∠1=30°,則∠2等于()A.30° B.45° C.60° D.70°2.如圖,已知則添加下列一個條件后,仍無法判定的是()A. B. C. D.3.如圖,PA,PB分別與⊙O相切于A,B兩點,若∠C=65°,則∠P的度數(shù)為()A.65° B.130° C.50° D.100°4.如圖是二次函數(shù)y=ax2+bx+c(a≠1)的圖象的一部分,給出下列命題:①a+b+c=1;②b>2a;③方程ax2+bx+c=1的兩根分別為﹣3和1;④當x<1時,y<1.其中正確的命題是()A.②③ B.①③ C.①② D.①③④5.如圖,在平行四邊形ABCD中,F(xiàn)是邊AD上的一點,射線CF和BA的延長線交于點E,如果,那么的值是()A. B. C. D.6.甲、乙兩名同學在一次用頻率去估計概率的實驗中,統(tǒng)計了某一結果出現(xiàn)的頻率繪出的統(tǒng)計圖如圖,則符合這一結果的實驗可能是()A.擲一枚正六面體的骰子,出現(xiàn)1點的概率B.拋一枚硬幣,出現(xiàn)正面的概率C.從一個裝有2個白球和1個紅球的袋子中任取一球,取到紅球的概率D.任意寫一個整數(shù),它能被2整除的概率7.如圖,四邊形的頂點坐標分別為.如果四邊形與四邊形位似,位似中心是原點,它的面積等于四邊形面積的倍,那么點的坐標可以是()A. B.C. D.8.如圖,反比例函數(shù)和正比例函數(shù)的圖象交于,兩點,已知點坐標為若,則的取值范圍是()A. B. C.或 D.或9.若將拋物線的函數(shù)圖象先向右平移1個單位,再向下平移2個單位后,可得到一個新的拋物線的圖象,則所得到的新的拋物線的解析式為()A. B.C. D.10.由四個相同的小正方體搭建了一個積木,它的三視圖如圖所示,則這個積木可能是()A. B. C. D.11.為了得到函數(shù)的圖象,可以將函數(shù)的圖象()A.先關于軸對稱,再向右平移1個單位長度,最后再向上平移3個單位長度B.先關于軸對稱,再向右平移1個單位長度,最后再向下平移3個單位長度C.先關于軸對稱,再向右平移1個單位長度,最后再向上平移3個單位長度D.先關于軸對稱,再向右平移1個單位長度,最后再向下平移3個單位長度12.中,,是邊上的高,若,則等于()A. B.或 C. D.或二、填空題(每題4分,共24分)13.已知關于x的一元二次方程x2+kx﹣6=0有一個根為﹣3,則方程的另一個根為_____.14.下表是某種植物的種子在相同條件下發(fā)芽率試驗的結果.種子個數(shù)100400900150025004000發(fā)芽種子個數(shù)92352818133622513601發(fā)芽種子頻率0.920.880.910.890.900.90根據(jù)上表中的數(shù)據(jù),可估計該植物的種子發(fā)芽的概率為________.15.如圖,已知點A,C在反比例函數(shù)的圖象上,點B,D在反比例函的圖象上,AB∥CD∥x軸,AB,CD在x軸的兩側,AB=5,CD=4,AB與CD的距離為6,則a?b的值是_______.16.已知y=x2+(1﹣a)x+2是關于x的二次函數(shù),當x的取值范圍是0≤x≤4時,y僅在x=4時取得最大值,則實數(shù)a的取值范圍是_____.17.小強同學從﹣1,0,1,2,3,4這六個數(shù)中任選一個數(shù),滿足不等式x+1<2的概率是_____.18.化簡:=______.三、解答題(共78分)19.(8分)如圖,在平面直角坐標系中,直線與x軸、y軸分別交于A、B兩點,點P從點A出發(fā),沿折線AB﹣BO向終點O運動,在AB上以每秒5個單位長度的速度運動,在BO上以每秒3個單位長度的速度運動;點Q從點O出發(fā),沿OA方向以每秒個單位長度的速度運動.P,Q兩點同時出發(fā),當點P停止時,點Q也隨之停止.過點P作PE⊥AO于點E,以PE,EQ為鄰邊作矩形PEQF,設矩形PEQF與△ABO重疊部分圖形的面積為S,點P運動的時間為t秒.(1)連結PQ,當PQ與△ABO的一邊平行時,求t的值;(2)求S與t之間的函數(shù)關系式,并直接寫出自變量t的取值范圍.20.(8分)如圖,⊙O的直徑AB長為10,弦AC長為6,∠ACB的平分線交⊙O于D.(1)求BC的長;(2)連接AD和BD,判斷△ABD的形狀,說明理由.(3)求CD的長.21.(8分)在精準脫貧期間,江口縣委、政府對江口教育制定了目標,為了保證2018年中考目標的實現(xiàn),對九年級進行了一次模擬測試,現(xiàn)對這次模擬測試的數(shù)學成績進行了分段統(tǒng)計,統(tǒng)計如表,共有2500名學生參加了這次模擬測試,為了解本次考試成績,從中隨機抽取了部分學生的數(shù)學成績x(得分均為整數(shù),滿分為100分)進行統(tǒng)計后得到下表,請根據(jù)表格解答下列問題:(1)隨機抽取了多少學生?(2)根據(jù)表格計算:a=;b=.分組頻數(shù)頻率x<30140.0730≤x<6032b60≤x<90a0.6290≤x300.15合計﹣1(3)設60分(含60)以上為合格,請據(jù)此估計我縣這次這次九年級數(shù)學模擬測試成績合格的學生有多少名?22.(10分)2019年第六屆世界互聯(lián)網(wǎng)大會在烏鎮(zhèn)召開,小南和小西參加了某分會場的志愿服務工作,本次志愿服務工作一共設置了三個崗位,分別是引導員、聯(lián)絡員和咨詢員.請你用畫樹狀圖或列表法求出小南和小西恰好被分配到同一個崗位進行志愿服務的概率.23.(10分)已知布袋中有紅、黃、藍色小球各一個,用畫樹狀圖或列表的方法求下列事件的概率.(1)如果摸出第一個球后,不放回,再摸出第二球,求摸出的球顏色是“一黃一藍”的概率.(2)隨機從中摸出一個小球,記錄下球的顏色后,把球放回,然后再摸出一個球,記錄下球的顏色,求得到的球顏色是“一黃一藍”的概率.24.(10分)如圖,四邊形ABCD中,AB∥CD,CD≠AB,點F在BC上,連DF與AB的延長線交于點G.(1)求證:CF?FG=DF?BF;(2)當點F是BC的中點時,過F作EF∥CD交AD于點E,若AB=12,EF=8,求CD的長.25.(12分)仿照例題完成任務:例:如圖1,在網(wǎng)格中,小正方形的邊長均為,點,,,都在格點上,與相交于點,求的值.解析:連接,,導出,再根據(jù)勾股定理求得三角形各邊長,然后利用三角函數(shù)解決問題.具體解法如下:連接,,則,,根據(jù)勾股定理可得:,,,,是直角三角形,,即.任務:(1)如圖2,,,,四點均在邊長為的正方形網(wǎng)格的格點上,線段,相交于點,求圖中的正切值;(2)如圖3,,,均在邊長為的正方形網(wǎng)格的格點上,請你直接寫出的值.26.如圖為正方形網(wǎng)格,每個小正方形的邊長均為1,各個小正方形的頂點叫做格點,請在下面的網(wǎng)格中按要求分別畫圖,使得每個圖形的頂點均在格點上.(1)在圖中畫一個以為一邊的菱形,且菱形的面積等于1.(2)在圖中畫一個以為對角線的正方形,并直接寫出正方形的面積.

參考答案一、選擇題(每題4分,共48分)1、C【解題分析】試題分析:如圖,連接AD.∵CD是⊙O的直徑,∴∠CAD=90°(直徑所對的圓周角是90°);在Rt△ABC中,∠CAD=90°,∠1=30°,∴∠DAB=60°;又∵∠DAB=∠2(同弧所對的圓周角相等),∴∠2=60°考點:圓周角定理2、A【分析】先根據(jù)∠1=∠2得出∠BAC=∠DAE,再由相似三角形的判定定理對各選項進行逐一判定即可.【題目詳解】解:∵∠1=∠2,

∴∠BAC=∠DAE.A.,∠B與∠D的大小無法判定,∴無法判定△ABC∽△ADE,故本選項符合題意;B.,∴△ABC∽△ADE,故本選項不符合題意;C.∴△ABC∽△ADE,故本選項不符合題意;D.∴△ABC∽△ADE,故本選項不符合題意;故選:A【題目點撥】本題考查的是相似三角形的判定,熟知相似三角形的判定定理是解答此題的關鍵.3、C【解題分析】試題分析:∵PA、PB是⊙O的切線,∴OA⊥AP,OB⊥BP,∴∠OAP=∠OBP=90°,又∵∠AOB=2∠C=130°,則∠P=360°﹣(90°+90°+130°)=50°.故選C.考點:切線的性質.4、B【分析】利用x=1時,y=1可對①進行判斷;利用對稱軸方程可對②進行判斷;利用對稱性確定拋物線與x軸的另一個交點坐標為(-3,1),則根據(jù)拋物線與x軸的交點問題可對③進行判斷;利用拋物線在x軸下方對應的自變量的范圍可對④進行判斷.【題目詳解】∵x=1時,y=1,∴a+b+c=1,所以①正確;∵拋物線的對稱軸為直線x=﹣=﹣1,∴b=2a,所以②錯誤;∵拋物線與x軸的一個交點坐標為(1,1),而拋物線的對稱軸為直線x=﹣1,∴拋物線與x軸的另一個交點坐標為(﹣3,1),∴方程ax2+bx+c=1的兩根分別為﹣3和1,所以③正確;當﹣3<x<1時,y<1,所以④錯誤.故選:B.【題目點撥】本題考查的是拋物線的性質及對稱性,掌握二次函數(shù)的性質及其與一元二次方程的關系是關鍵.5、D【解題分析】分析:根據(jù)相似三角形的性質進行解答即可.詳解:∵在平行四邊形ABCD中,∴AE∥CD,∴△EAF∽△CDF,∵∴∴∵AF∥BC,∴△EAF∽△EBC,∴故選D.點睛:考查相似三角形的性質:相似三角形的面積比等于相似比的平方.6、C【解題分析】解:A.擲一枚正六面體的骰子,出現(xiàn)1點的概率為,故此選項錯誤;B.擲一枚硬幣,出現(xiàn)正面朝上的概率為,故此選項錯誤;C.從一裝有2個白球和1個紅球的袋子中任取一球,取到紅球的概率是:≈0.33;故此選項正確;D.任意寫出一個整數(shù),能被2整除的概率為,故此選項錯誤.故選C.7、B【分析】根據(jù)位似圖形的面積比得出相似比,然后根據(jù)各點的坐標確定其對應點的坐標即可.【題目詳解】解:∵四邊形OABC與四邊形O′A′B′C′關于點O位似,且四邊形的面積等于四邊形OABC面積的,∴四邊形OABC與四邊形O′A′B′C′的相似比為2:3,∵點A,B,C分別的坐標),∴點A′,B′,C′的坐標分別是(3,0),(6,6),(-3,3)或(-3,0),(-6,-6),(3,-3).

故選:B.【題目點撥】本題考查了位似變換及坐標與圖形的知識,解題的關鍵是根據(jù)兩圖形的面積的比確定其位似比,注意有兩種情況.8、D【分析】根據(jù)反比例函數(shù)和正比例函數(shù)的對稱性可得,交點A與B關于原點對稱,得到B點坐標,再觀察圖像即可得到的取值范圍.【題目詳解】解:∵比例函數(shù)和正比例函數(shù)的圖象交于,兩點,∴B的坐標為(1,3)觀察函數(shù)圖像可得,則的取值范圍為或.故答案為:D【題目點撥】本題考查反比例函數(shù)的圖像和性質.9、C【分析】根據(jù)函數(shù)圖象平移的法則“左加右減,上加下減”的原則進行解答即可.【題目詳解】由“左加右減”的原則可知,將拋物線先向右平移1個單位可得到拋物線;由“上加下減”的原則可知,將拋物線先向下平移2個單位可得到拋物線.

故選:C.【題目點撥】本題考查的是二次函數(shù)的圖象與幾何變換,熟知函數(shù)圖象平移的法則是解答此題的關鍵.10、A【解題分析】分析:從主視圖上可以看出上下層數(shù),從俯視圖上可以看出底層有多少小正方體,從左視圖上可以看出前后層數(shù),綜合三視圖可得到答案.解答:解:從主視圖上可以看出左面有兩層,右面有一層;從左視圖上看分前后兩層,后面一層上下兩層,前面只有一層,從俯視圖上看,底面有3個小正方體,因此共有4個小正方體組成,故選A.11、A【分析】先求出兩個二次函數(shù)的頂點坐標,然后根據(jù)頂點坐標即可判斷對稱或平移的方式.【題目詳解】的頂點坐標為的頂點坐標為∴點先關于軸對稱,再向右平移1個單位長度,最后再向上平移3個單位長度可得到點故選A【題目點撥】本題主要考查二次函數(shù)圖象的平移,掌握二次函數(shù)圖象的平移規(guī)律是解題的關鍵.12、B【分析】根據(jù)題意畫出圖形,當△ABC中為銳角三角形或鈍角三角形兩種情況解答,結合已知條件可以推出△ABD∽△BCD,即可得出∠ABC的度數(shù).【題目詳解】(1)如圖,當△ABC中為銳角三角形時,

∵BD⊥AC,∴△ABD∽△BCD,

∵∠A=30°,

∴∠ABD=∠C=60°,∠A=∠CBD=30°,

∴∠ABC=90°.

(2)如圖,當△ABC中為鈍角三角形時,

∵BD⊥AC,∴△ABD∽△BCD,

∵∠A=30°,

∴∠ABD=∠DCB=60°,∠A=∠DBC=30°,

∴∠ABC=30°.

故選擇B.【題目點撥】本題考查了相似三角形的判定與性質,將三角形分銳角三角形和鈍角三角形分別討論是解題的關鍵.二、填空題(每題4分,共24分)13、1【分析】設方程的另一個根為a,根據(jù)根與系數(shù)的關系得出a+(﹣3)=﹣k,﹣3a=﹣6,求出即可.【題目詳解】設方程的另一個根為a,則根據(jù)根與系數(shù)的關系得:a+(﹣3)=﹣k,﹣3a=﹣6,解得:a=1,故答案為1.【題目點撥】本題考查了根與系數(shù)的關系和一元二次方程的解,能熟記根與系數(shù)的關系的內容是解此題的關鍵.14、0.1【分析】仔細觀察表格,發(fā)現(xiàn)大量重復試驗發(fā)芽的頻率逐漸穩(wěn)定在0.1左右,從而得到結論.【題目詳解】由表格可得,當實驗次數(shù)越來越多時,發(fā)芽種子頻率穩(wěn)定在0.1,符合用頻率佔計概率,∴種子發(fā)芽概率為0.1.故答案為:0.1.【題目點撥】本題考查了利用頻率估計概率,大量反復試驗下頻率穩(wěn)定值即概率.用到的知識點為:頻率=所求情況數(shù)與總情況數(shù)之比.15、【分析】利用反比例函數(shù)k的幾何意義得出a-b=4?OE,a-b=5?OF,求出=6,即可求出答案.【題目詳解】如圖,∵由題意知:a-b=4?OE,a-b=5?OF,∴OE=,OF=,又∵OE+OF=6,∴=6,∴a-b=,故答案為:.【題目點撥】本題考查了反比例函數(shù)圖象上點的坐標特征,能求出方程=6是解此題的關鍵.16、a<1【分析】先求出拋物線的對稱軸,再根據(jù)二次函數(shù)的增減性列出不等式,求解即可.【題目詳解】解:∵0≤x≤4時,y僅在x=4時取得最大值,∴﹣<,解得a<1.故答案為:a<1.【題目點撥】本題考查了二次函數(shù)的最值問題,熟練掌握二次函數(shù)的增減性和對稱軸公式是解題的關鍵.17、【分析】首先解不等式得x<1,然后找出這六個數(shù)中符合條件的個數(shù),再利用概率公式求解.【題目詳解】解:∵x+1<2∴x<1∴在﹣1,0,1,2,3,4這六個數(shù)中,滿足不等式x+1<2的有﹣1、0這兩個,∴滿足不等式x+1<2的概率是,故答案為:.【題目點撥】本題考查求概率,熟練掌握概率公式是解題的關鍵.18、.【解題分析】試題解析:原式故答案為三、解答題(共78分)19、(1)當與的一邊平行時,或;(2)【分析】(1)先根據(jù)一次函數(shù)確定點、的坐標,再由、,可得、,由此構建方程即可解決問題;(2)根據(jù)點在線段上、點在線段上的位置不同、自變量的范圍不同,進行分類討論,得出與的分段函數(shù).【題目詳解】解:(1)∵在中,令,則;令,則∴,∴,①當時,,則∴∴②當時,,則∴∴∴綜上所述,當與的一邊平行時,或.(2)①當0≤t≤時,重疊部分是矩形PEQF,如圖:∴∴∴∴,,∴;②當<t≤2時,如圖,重疊部分是四邊形PEQM,∴,,,,易得∴,∴;③當2<t≤3時,重疊部分是五邊形MNPOQ,如圖:∴∴,∴,∴,,,∴;④當3<t<4時,重疊部分是矩形POQF,如圖:∵,,∴,∴綜上所述,.【題目點撥】此題主要考查了相似三角形的判定與性質以及矩形和梯形的面積求法等知識,利用分類討論的思想方法是解題的關鍵.20、(1);(2)△ABD是等腰直角三角形,見解析;(3)【解題分析】(1)由題意根據(jù)圓周角定理得到∠ACB=90°,然后利用勾股定理可計算出BC的長;(2)根據(jù)圓周角定理得到∠ADB=90°,再根據(jù)角平分線定義AD=BD,進而即可判斷△ABD為等腰直角三角形;(3)由題意過點A作AE⊥CD,垂足為E,可知,分別求出CE和DE的長即可求出CD的長.【題目詳解】解:(1)∵AB是直徑∴∠ACB=∠ADB=90o在Rt△ABC中,.(2)連接AD和BD,∵CD平分∠ACB,∠ACD=∠BCD,∴即有AD=BD∵AB為⊙O的直徑,∴∠ADB=90°,∴△ABD是等腰直角三角形.(3)過點A作AE⊥CD,垂足為E,在Rt△ACE中,∵CD平分∠ACB,且∠ACB=90o∴CE=AE=AC=在Rt△ABD中,AD2+BD2=AB2,得出在Rt△ADE中,∴.【題目點撥】本題考查圓的綜合問題,熟練掌握圓周角定理即在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.以及其推論半圓(或直徑)所對的圓周角是直角,90°的圓周角所對的弦是直徑進行分析.21、(1)200名;(2)124,0.16;(3)1925名【分析】(1)由題意根據(jù)頻數(shù)分布表中的數(shù)據(jù),可以計算出隨機抽取的學生人數(shù);(2)由題意根據(jù)(1)中的數(shù)據(jù)和頻數(shù)分布表中的數(shù)據(jù),可以計算出a和b的值;(3)根據(jù)頻數(shù)分布表中的數(shù)據(jù),即可計算出我縣這次這次九年級數(shù)學模擬測試成績合格的學生有多少名.【題目詳解】解:(1)14÷0.07=200(名),即隨機抽取了200名學生;(2)a=200×0.62=124,b=32÷200=0.16,故答案為:124,0.16;(3)2500×(0.62+0.15)=2500×0.77=1925(名),答:我縣這次這次九年級數(shù)學模擬測試成績合格的學生有1925名.【題目點撥】本題考查頻數(shù)分布表和用樣本估計總體,解答本題的關鍵是明確題意并求出相應的數(shù)據(jù).22、【分析】分別用字母A,B,C代替引導員、聯(lián)絡員和咨詢員崗位,利用列表法求出所有等可能結果,再根據(jù)概率公式求解可得.【題目詳解】分別用字母A,B,C代替引導員、聯(lián)絡員和咨詢員崗位,用列表法列舉所有可能出現(xiàn)的結果:小西小南ABCA(A,A)(A,B)(A,C)B(B,A)(B,B)(B,C)C(C,A)(C,B)(C,C)由表中可以看出,所有可能的結果有9種,并且這9種結果出現(xiàn)的可能性相等,所有可能的結果中,小南和小西恰好被分配到同一個崗位的結果有3種,即AA,BB,CC,∴小南和小西恰好被分配到同一個崗位進行志愿服務的概率==.【題目點撥】考查隨機事件發(fā)生的概率,關鍵是用列表法或樹狀圖表示出所有等可能出現(xiàn)的結果數(shù),用列表法或樹狀圖的前提是必須使每一種情況發(fā)生的可能性是均等的.23、(1);(2)【分析】運用畫樹狀圖或列表的方法列舉出符合題意的各種情況的個數(shù),再根據(jù)概率公式:概率=所求情況數(shù)與總情況數(shù)之比解答即可.【題目詳解】解:(1)畫樹狀圖如圖所示.共有6種等可能的情況,其中摸到的球是“一黃一藍”的情況有2種,因此球顏色是“一黃一藍”的概率為.(2)畫樹狀圖如圖所示.共有9種等可能的情況,其中摸到的球是“一黃一藍”的情況有2種,因此球顏色是“一黃一藍”的概率為.【題目點撥】本題主要考查的是用畫樹狀圖法或列表法求概率.著重考查了用畫樹狀圖法或列表法列舉隨機事件出現(xiàn)的所有情況,并求出某事件的概率,應注意認真審題,注意不放回再摸和放回再摸的區(qū)別.24、(1)證明見解析;(2)1.【分析】(1)證明△CDF∽△BGF可得出結論;(2)證明△CDF≌△BGF,可得出

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論