版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆安徽省阜陽市高一上數(shù)學期末檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.將函數(shù)的圖像向左、向下各平移1個單位長度,得到的函數(shù)圖像,則()A. B.C. D.2.設全集為,集合,,則()A. B.C. D.3.已知函數(shù),,的零點依次為,則以下排列正確的是()A. B.C. D.4.已知函數(shù)是定義域為的奇函數(shù),且,當時,,則()A. B.C. D.5.在下列區(qū)間中,函數(shù)f(x)=ex+2x﹣5的零點所在的區(qū)間為()A.(﹣1,0) B.(0,1)C.(1,2) D.(2,3)6.表示集合中整數(shù)元素的個數(shù),設,,則()A.5 B.4C.3 D.27.從裝有兩個紅球和兩個白球的口袋內(nèi)任取兩個球,那么互斥而不對立的事件是()A.至少有一個白球與都是紅球 B.恰好有一個白球與都是紅球C.至少有一個白球與都是白球 D.至少有一個白球與至少一個紅球8.函數(shù)的大致圖像是()A. B.C. D.9.如圖,某幾何體的三視圖是三個半徑相等的圓及每個圓中兩條互相垂直的半徑.若該幾何體的體積是,則它的表面積是A.17π B.18πC.20π D.28π10.函數(shù),對任意的非零實數(shù),關(guān)于的方程的解集不可能是A B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若坐標原點在圓的外部,則實數(shù)m的取值范圍是___12.已知圓錐的表面積為,且它的側(cè)面展開圖是一個半圓,求這個圓錐的體積是______13.在平面直角坐標系xOy中,已知圓有且僅有三個點到直線l:的距離為1,則實數(shù)c的取值集合是______14.已知,函數(shù),若函數(shù)有兩個零點,則實數(shù)k的取值范圍是________15.已知函數(shù),若時,恒成立,則實數(shù)k的取值范圍是_____.16.已知,,,則的最小值___________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知求的值;求的值.18.已知定義在上的函數(shù),其中,且(1)試判斷函數(shù)的奇偶性,并證明你的結(jié)論;(2)解關(guān)于的不等式19.二次函數(shù)f(x)滿足f(x+1)-f(x)=2x,且f(0)=1.(1)求f(x)的解析式;(2)解不等式f(x)>2x+5.20.2022年是蘇頌誕辰1001周年,蘇頌發(fā)明的水運儀象臺被譽為世界上最早的天文鐘.水運儀象臺的原動輪叫樞輪,是一個直徑約3.4米的水輪,它轉(zhuǎn)一圈需要30分鐘.如圖,退水壺內(nèi)水面位于樞輪中心下方1.19米處,當點P從樞輪最高處隨樞輪開始轉(zhuǎn)動時,打開退水壺出水口,壺內(nèi)水位以每分鐘0.017米的速度下降,將樞輪轉(zhuǎn)動視為勻速圓周運動.以樞輪中心為原點,水平線為x軸建立平面直角坐標系,令P點縱坐標為,水面縱坐標為,P點轉(zhuǎn)動經(jīng)過的時間為x分鐘.(參考數(shù)據(jù):,,)(1)求,關(guān)于x的函數(shù)關(guān)系式;(2)求P點進入水中所用時間的最小值(單位:分鐘,結(jié)果取整數(shù))21.總書記指出:“我們既要綠水青山,也要金山銀山.”新能源汽車環(huán)保、節(jié)能,以電代油,減少排放,既符合我國的國情,也代表了世界汽車產(chǎn)業(yè)發(fā)展的方向.工業(yè)部表示,到年中國的汽車總銷量將達到萬輛,并希望新能源汽車至少占總銷量的五分之一.江蘇某新能源公司某年初購入一批新能源汽車充電樁,每臺元,到第年年末每臺設備的累計維修保養(yǎng)費用為元,每臺充電樁每年可給公司收益元.()(1)每臺充電樁第幾年年末開始獲利;(2)每臺充電樁在第幾年年末時,年平均利潤最大.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解題分析】根據(jù)函數(shù)的圖象變換的原則,結(jié)合對數(shù)的運算性質(zhì),準確運算,即可求解.【題目詳解】由題意,將函數(shù)的圖像向左、向下各平移1個單位長度,可得.故選:B.2、B【解題分析】先求出集合B的補集,再根據(jù)集合的交集運算求得答案.【題目詳解】因為,所以,故,故選:B.3、B【解題分析】在同一直角坐標系中畫出,,與的圖像,數(shù)形結(jié)合即可得解【題目詳解】函數(shù),,的零點依次為,在同一直角坐標系中畫出,,與的圖像如圖所示,由圖可知,,,滿足故選:B.【題目點撥】方法點睛:已知函數(shù)有零點(方程有根)求參數(shù)值(取值范圍)常用的方法:(1)直接法:直接求解方程得到方程的根,再通過解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)的值域問題加以解決;(3)數(shù)形結(jié)合法:先對解析式變形,進而構(gòu)造兩個函數(shù),然后在同一平面直角坐標系中畫出函數(shù)的圖象,利用數(shù)形結(jié)合的方法求解4、A【解題分析】由奇偶性結(jié)合得出,再結(jié)合解析式得出答案.【題目詳解】由函數(shù)是定義域為的奇函數(shù),且,,而,則故選:A5、C【解題分析】由零點存在性定理即可得出選項.【題目詳解】由函數(shù)為連續(xù)函數(shù),且,,所以,所以零點所在的區(qū)間為,故選:C【題目點撥】本題主要考查零點存在性定理,在運用零點存在性定理時,函數(shù)為連續(xù)函數(shù),屬于基礎(chǔ)題.6、C【解題分析】首先求出集合,再根據(jù)交集的定義求出,即可得解;【題目詳解】解:因為,,所以,則,,,所以;故選:C7、B【解題分析】列舉每個事件所包含的基本事件,結(jié)合互斥事件和對立事件的定義,依次驗證即可.【題目詳解】解:對于A,事件:“至少有一個白球”與事件:“都是紅球”不能同時發(fā)生,但是對立,故A錯誤;對于B,事件:“恰好有一個白球”與事件:“都是紅球”不能同時發(fā)生,但從口袋內(nèi)任取兩個球時還有可能是兩個都是白球,所以兩個事件互斥而不對立,故B正確;對于C,事件:“至少有一個白球”與事件:“都是白球”可以同時發(fā)生,所以這兩個事件不是互斥的,故C錯誤;對于D,事件:“至少有一個白球”與事件:“至少一個紅球”可以同時發(fā)生,即“一個白球,一個紅球”,所以這兩個事件不是互斥的,故D錯誤.故選:B.8、D【解題分析】由題可得定義域為,排除A,C;又由在上單增,所以選D.9、A【解題分析】由三視圖知,該幾何體的直觀圖如圖所示:是一個球被切掉左上角的,即該幾何體是個球,設球的半徑為,則,解得,所以它的表面積是的球面面積和三個扇形面積之和,即,故選A【考點】三視圖及球的表面積與體積【名師點睛】由于三視圖能有效地考查學生的空間想象能力,所以以三視圖為載體的立體幾何題基本上是高考每年必考內(nèi)容,高考試題中三視圖一般與幾何體的表面積與體積相結(jié)合.由三視圖還原出原幾何體是解決此類問題的關(guān)鍵.10、D【解題分析】由題意得函數(shù)圖象的對稱軸為設方程的解為,則必有,由圖象可得是平行于x軸的直線,它們與函數(shù)的圖象必有交點,由函數(shù)圖象的對稱性得的兩個解要關(guān)于直線對稱,故可得;同理方程的兩個解也要關(guān)于直線對稱,同理從而可得若關(guān)于的方程有一個正根,則方程有兩個不同的實數(shù)根;若關(guān)于的方程有兩個正根,則方程有四個不同的實數(shù)根綜合以上情況可得,關(guān)于的方程的解集不可能是.選D非選擇題二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】方程表示圓,得,根據(jù)點在圓外,得不等式,解不等式可得結(jié)果.【題目詳解】圓的標準方程為,則,若坐標原點在圓的外部,則,解得,則實數(shù)m的取值范圍是,故答案為:【題目點撥】本題考查圓的一般方程,考查點與圓的位置關(guān)系的應用,屬于簡單題.12、【解題分析】設圓錐母線長為,底面圓半徑長,側(cè)面展開圖是一個半圓,此半圓半徑為,半圓弧長為,表面積是側(cè)面積與底面積的和,則圓錐的底面直徑圓錐的高點睛:本題主要考查了棱柱,棱錐,棱臺的側(cè)面積和表面積的知識點.首先,設圓錐母線長為,底面圓半徑長,然后根據(jù)側(cè)面展開圖,分析出母線與半徑的關(guān)系,然后求解其底面體積即可13、【解題分析】因為圓心到直線的距離為,所以由題意得考點:點到直線距離14、【解題分析】由題意函數(shù)有兩個零點可得,得,令與,作出函數(shù)與的圖象如圖所示:由圖可知,函數(shù)有且只有兩個零點,則實數(shù)的取值范圍是.故答案為:.【題目點撥】本題考查分段函數(shù)的應用,函數(shù)零點的判斷等知識,解題時要靈活應用數(shù)形結(jié)合思想15、【解題分析】當時,,當時,,又,如圖所示:當時,在處取得最大值,且,令,則數(shù)列是以1為首項,以為公比的等比數(shù)列,∴,∴,若時,恒成立,只需,當上,均有恒成立,結(jié)合圖形知:,∴,∴,令,,當時,,∴,∴,當時,,,∴,∴最大,∴,∴.考點:1.函數(shù)圖像;2.恒成立問題;3.數(shù)列的最值.16、【解題分析】利用“1”的變形,結(jié)合基本不等式,求的最小值.【題目詳解】,當且僅當時,即等號成立,,解得:,,所以的最小值是.故答案為:三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解題分析】(1)作的平方可得,則,由的范圍求解即可;(2)先利用降冪公式和切弦互化進行化簡,得原式,將與代入求解即可【題目詳解】(1)由題,,則,因為又,則,所以因此,(2)由題,由(1)可,代入可得原式【題目點撥】本題考查同角的平方關(guān)系式及完全平方公式的應用,考查降冪公式,考查切弦互化,考查運算能力18、(1)為上的奇函數(shù);證明見解析(2)答案不唯一,具體見解析【解題分析】(1)利用函數(shù)奇偶性的定義判斷即可,(2)由題意可得,得,然后分和解不等式即可【小問1詳解】函數(shù)為奇函數(shù)證明:函數(shù)的定義域為,,即對任意恒成立.所以為上的奇函數(shù)【小問2詳解】由,得,即因為,,且,所以且由,即當,即時,解得當,即時,解得綜上,當時,不等式的解集為;當時,不等式的解集為19、(1);(2)【解題分析】(1)設二次函數(shù)f(x)=ax2+bx+c,利用待定系數(shù)法即可求出f(x);(2)利用一元二次不等式的解法即可得出【題目詳解】(1).設二次函數(shù)f(x)=ax2+bx+c,∵函數(shù)f(x)滿足f(x+1)﹣f(x)=2x,f(x+1)-f(x)=-=2ax+a+b=2x,解得.且f(0)=1.c=1∴f(x)=x2﹣x+1(2)不等式f(x)>2x+5,即x2﹣x+1>2x+5,化為x2﹣3x﹣4>0化為(x﹣4)(x+1)>0,解得x>4或x<﹣1∴原不等式的解集為【題目點撥】本題考查了用待定系數(shù)法求二次函數(shù)的解析式和一元二次不等式的解法,熟練掌握其方法是解題的關(guān)鍵,屬于中檔題.20、(1),(2)13分鐘【解題分析】(1)按照題目所給定的坐標系分別寫出和的方程即可;(2)根據(jù)零點存在定理判斷即可.【小問1詳解】可設,∵轉(zhuǎn)動的周期為30分鐘,∴,∵樞輪的直徑為3.4米,∴,∵點P的初始位置為最高點,∴,∴,∵退水壺內(nèi)水面位于樞輪中心下方1.19米處,∴水面的初始縱坐標為,∵水位以每分鐘0.017米速度下降,∴;【小問2詳解】P點進入水中,則,即∴作出和的大致圖像,顯然在內(nèi)存在一個交點令,∵,,∴P點進入水中所用時間的最
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣東松山職業(yè)技術(shù)學院《綠色制造與可持續(xù)發(fā)展》2023-2024學年第一學期期末試卷
- 廣東水利電力職業(yè)技術(shù)學院《工程項目管理》2023-2024學年第一學期期末試卷
- 廣東汕頭幼兒師范高等??茖W?!吨袊糯恼摗?023-2024學年第一學期期末試卷
- 廣東嶺南職業(yè)技術(shù)學院《行業(yè)分析》2023-2024學年第一學期期末試卷
- 【名師一號】2020-2021學年高中英語北師大版必修4-雙基限時練19
- 三年級英語上冊單詞
- 《肩關(guān)節(jié)解剖m》課件
- 語文書六年級上冊人教版
- 【全程復習方略】2021年高中化學選修三單元質(zhì)量評估(二)第2章-分子結(jié)構(gòu)與性質(zhì)-
- 【2021屆備考】2020全國名校數(shù)學試題分類解析匯編(12月第一期):B9函數(shù)與方程
- 物理八年級上冊凸透鏡成像的規(guī)律(課件)
- 2024-2025學年新教材高中地理 第3單元 區(qū)域聯(lián)系與區(qū)域發(fā)展 第1節(jié) 大都市輻射對區(qū)域發(fā)展的影響-以上海市為例說課稿 魯教版選擇性必修2
- 物業(yè)充電樁合作加盟協(xié)議書范文
- 機械工安全操作規(guī)程有哪些(11篇)
- 2024年執(zhí)業(yè)醫(yī)師考試-中醫(yī)執(zhí)業(yè)醫(yī)師考試近5年真題集錦(頻考類試題)帶答案
- 2024-2030年中國真空滅弧室行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略分析報告
- 全國計算機一級考試題庫(附答案)
- 【飛科電器公司基于杜邦分析法的財務分析案例(7700字論文)】
- 廣東省深圳市(2024年-2025年小學四年級語文)統(tǒng)編版期末考試(上學期)試卷及答案
- 兒童呼吸道合胞病毒感染臨床診治試題
- 2021-2022學年廣東省廣州市花都區(qū)六年級(上)期末英語試卷
評論
0/150
提交評論