廣東省佛山市重點中學(xué)2024屆高一上數(shù)學(xué)期末監(jiān)測試題含解析_第1頁
廣東省佛山市重點中學(xué)2024屆高一上數(shù)學(xué)期末監(jiān)測試題含解析_第2頁
廣東省佛山市重點中學(xué)2024屆高一上數(shù)學(xué)期末監(jiān)測試題含解析_第3頁
廣東省佛山市重點中學(xué)2024屆高一上數(shù)學(xué)期末監(jiān)測試題含解析_第4頁
廣東省佛山市重點中學(xué)2024屆高一上數(shù)學(xué)期末監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

廣東省佛山市重點中學(xué)2024屆高一上數(shù)學(xué)期末監(jiān)測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.方程的解所在區(qū)間是()A. B.C. D.2.已知偶函數(shù)的定義域為,當時,,若,則的解集為()A. B.C. D.3.下列函數(shù)是奇函數(shù),且在上單調(diào)遞增的是()A. B.C. D.4.如果且,則等于A.2016 B.2017C.1009 D.20185.已知函數(shù),若方程有五個不同的實數(shù)根,則實數(shù)的取值范圍為()A. B.C. D.6.在下列各區(qū)間上,函數(shù)是單調(diào)遞增的是A. B.C. D.7.函數(shù)f(x)=lnx+3x-7的零點所在的區(qū)間是()A. B.C. D.8.已知是偶函數(shù),且在上是減函數(shù),又,則的解集為()A. B.C. D.9.已知向量,則銳角等于A.30° B.45°C.60° D.75°10.設(shè)m,n是兩條不同的直線,α,β,γ是三個不同的平面,則下列命題中正確的是A.若,,則B.若,,,則C.若,,則D.若,,,則二、填空題:本大題共6小題,每小題5分,共30分。11.已知一組數(shù)據(jù),,…,的平均數(shù),方差,則另外一組數(shù)據(jù),,…,的平均數(shù)為______,方差為______12.已知扇形的弧長為,半徑為1,則扇形的面積為___________.13.若,且,則上的最小值是_________.14.若命題“,”為假命題,則實數(shù)的取值范圍為______.15.函數(shù)最小值為______16.已知,,,則的最大值為___________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù),(,,)圖象的一部分如圖所示.(1)求函數(shù)的解析式;(2)當時,求的值域.18.如圖,正三棱柱的底面邊長為3,側(cè)棱,D是CB延長線上一點,且求二面角的正切值;求三棱錐的體積19.已知函數(shù)(1)若函數(shù)為奇函數(shù),求實數(shù)的值;(2)判斷函數(shù)在定義域上的單調(diào)性,并用單調(diào)性定義加以證明;(3)若函數(shù)為奇函數(shù),求滿足不等式的實數(shù)的取值范圍.20.已知定義域為的奇函數(shù).(1)求的值;(2)用函數(shù)單調(diào)性的定義證明函數(shù)在上是增函數(shù).21.已知是定義在上的偶函數(shù),當時,.(1)求在時的解析式;(2)若,在上恒成立,求實數(shù)的取值范圍.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解題分析】判斷所給選項中的區(qū)間的兩個端點的函數(shù)值的積的正負性即可選出正確答案.【題目詳解】∵,∴,,,,∴,∵函數(shù)的圖象是連續(xù)的,∴函數(shù)的零點所在的區(qū)間是.故選C【題目點撥】本題考查了根據(jù)零存在原理判斷方程的解所在的區(qū)間,考查了數(shù)學(xué)運算能力.2、D【解題分析】先由條件求出參數(shù),得到在上的單調(diào)性,結(jié)合和函數(shù)為偶函數(shù)進行求解即可.【題目詳解】因為為偶函數(shù),所以,解得.在上單調(diào)遞減,且.因為,所以,解得或.故選:D3、D【解題分析】利用冪函數(shù)的單調(diào)性和奇函數(shù)的定義即可求解.【題目詳解】當時,冪函數(shù)為增函數(shù);當時,冪函數(shù)為減函數(shù),故在上單調(diào)遞減,、和在上單調(diào)遞增,從而A錯誤;由奇函數(shù)定義可知,和不是奇函數(shù),為奇函數(shù),從而BC錯誤,D正確.故選:D.4、D【解題分析】∵f(x)滿足對任意的實數(shù)a,b都有f(a+b)=f(a)?f(b),∴令b=1得,f(a+1)=f(a)?f(1),∴,所以,共1009項,所以.故選D.5、A【解題分析】由可得或,數(shù)形結(jié)合可方程只有解,則直線與曲線有個交點,結(jié)合圖象可得出實數(shù)的取值范圍.【題目詳解】由可得或,當時,;當時,.作出函數(shù)、、圖象如下圖所示:由圖可知,直線與曲線有個交點,即方程只有解,所以,方程有解,即直線與曲線有個交點,則.故選:A.6、C【解題分析】根據(jù)選項的自變量范圍判斷函數(shù)的單調(diào)區(qū)間即可.【題目詳解】當時,,由正弦函數(shù)單調(diào)性知,函數(shù)單增區(qū)間應(yīng)滿足,即,觀察選項可知,是函數(shù)的單增區(qū)間,其余均不是,故選:C7、C【解題分析】由函數(shù)的解析式求得f(2)f(3)<0,再根據(jù)根據(jù)函數(shù)零點的判定定理可得函數(shù)f(x)的零點所在的區(qū)間【題目詳解】∵函數(shù)f(x)=lnx+3x-7在其定義域上單調(diào)遞增,∴f(2)=ln2+2×3-7=ln2-1<0,f(3)=ln3+9-7=ln3+2>0,∴f(2)f(3)<0.根據(jù)函數(shù)零點的判定定理可得函數(shù)f(x)的零點所在的區(qū)間是(2,3),故選C【題目點撥】本題主要考查求函數(shù)的值,函數(shù)零點的判定定理,屬于基礎(chǔ)題8、B【解題分析】根據(jù)題意推得函數(shù)在上是增函數(shù),結(jié)合,確定函數(shù)值的正負情況,進而求得答案.【題目詳解】是偶函數(shù),且在上是減函數(shù),又,則,且在上是增函數(shù),故時,,時,,故的解集是,故選:B.9、B【解題分析】因為向量共線,則有,得,銳角等于45°,選B10、C【解題分析】根據(jù)空間中直線與平面,平面與平面的位置關(guān)系即得。【題目詳解】A.因為垂直于同一平面的兩個平面可能平行或相交,不能確定兩平面之間是平行關(guān)系,故不正確;B.若,,,則或相交,故不正確;C.由垂直同一條直線的兩個平面的關(guān)系判斷,正確;D.若,,,則或相交,故不正確.故選:C【題目點撥】本題考查空間直線和平面,平面和平面的位置關(guān)系,考查學(xué)生的空間想象能力。二、填空題:本大題共6小題,每小題5分,共30分。11、①.11②.54【解題分析】由平均數(shù)與方差的性質(zhì)即可求解.【題目詳解】解:由題意,數(shù)據(jù),,…,的平均數(shù)為,方差為故答案:11,54.12、##【解題分析】利用扇形面積公式進行計算.【題目詳解】即,,由扇形面積公式得:.故答案為:13、【解題分析】將的最小值轉(zhuǎn)化為求的最小值,然后展開后利用基本不等式求得其最小值【題目詳解】解:因為,且,,當且僅當時,即,時等號成立;故答案為:14、【解題分析】命題為假命題時,二次方程無實數(shù)解,據(jù)此可求a的范圍.【題目詳解】若命題“,”為假命題,則一元二次方程無實數(shù)解,∴.∴a的取值范圍是:.故答案為:.15、【解題分析】根據(jù),并結(jié)合基本不等式“1”的用法求解即可.【題目詳解】解:因為,所以,當且僅當時,等號成立故函數(shù)的最小值為.故答案為:16、【解題分析】由題知,進而令,,再結(jié)合基本不等式求解即可.【題目詳解】解:,當時取等,所以,故令,則,所以,當時,等號成立.所以的最大值為故答案為:三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),(2)【解題分析】(1)根據(jù)函數(shù)的最大值得到,根據(jù)周期得到,根據(jù)得到,從而得到.(2)首先根據(jù)題意得到,再根據(jù),利用正弦函數(shù)圖象性質(zhì)求解值域即可.【題目詳解】(1)因為,,所以.又因為,所以,即,.因為,,,所以,又因為,所以,.(2).因為,所以,所以,即,故函數(shù)的值域為.18、(1)2(2)【解題分析】取BC中點O,中點E,連結(jié)OE,OA,以O(shè)為原點,OD為x軸,OE為y軸,OA為z軸,建立空間直角坐標系,利用向量法能求出二面角的正切值三棱錐的體積,由此能求出結(jié)果【題目詳解】取BC中點O,中點E,連結(jié)OE,OA,由正三棱柱的底面邊長為3,側(cè)棱,D是CB延長線上一點,且以O(shè)為原點,OD為x軸,OE為y軸,OA為z軸,建立空間直角坐標系,則3,,0,,0,,0,,所以0,,3,,其中平面ABD的法向量1,,設(shè)平面的法向量y,,則,取,得1,,設(shè)二面角的平面角為,則,則,則,所以二面角的正切值為2由(1)可得平面,所以是三棱錐的高,且,所以三棱錐的體積:【題目點撥】本題主要考查了二面角的求解,及空間幾何體的體積的計算,其中解答中根據(jù)幾何體的結(jié)構(gòu)特征,建立適當?shù)目臻g直角坐標系,利用向量的夾角公式求解二面角問題是求解空間角的常用方法,同時注意“等體積法”在求解三棱錐體積中的應(yīng)用,著重考查了推理與運算能力,屬于中檔試題19、(1)(2)函數(shù)在上單調(diào)遞減,證明見解析(3)【解題分析】(1)利用奇函數(shù)的定義可得的值;(2)利用單調(diào)性定義證明即可;(3)根據(jù)的奇偶性和單調(diào)性可得的取值范圍.【小問1詳解】函數(shù)的定義域為,因為為奇函數(shù),所以,所以,所以,所以.【小問2詳解】函數(shù)在上單調(diào)遞減.下面用單調(diào)性定義證明:任取,且,則因為在上單調(diào)遞增,且,所以,又,所以,所以函數(shù)在上單調(diào)遞減.【小問3詳解】因為為奇函數(shù),所以,由得,即,由(2)可知,函數(shù)在上單調(diào)遞減,所以,即,解得或,所以的取值范圍為.20、(1)2;(2)見解析【解題分析】:(1)利用奇函數(shù)定義f(-x)=-f(x)中特殊值求a的值;(2)按按取點,作差,變形,判斷的過程來即可試題解析:(1)∵是定義域為的奇函數(shù),∴,即,∴,即解得:.(2)由(1)知,,任取,且,則由,可知:∴,,,∴,即.∴函數(shù)在上是增函數(shù).點晴:本題屬于對函數(shù)單調(diào)性應(yīng)用的考察,若函數(shù)在區(qū)間上單調(diào)遞增,則時,有,事實上,若,則,這與矛盾,類似地,若在區(qū)間上單調(diào)遞減,則當

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論