




下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
一種基于深度神經網絡模型的測井曲線生成方法摘要測井曲線是油田勘探和開發(fā)中常用的一種工具,在地層分析和油氣儲量預測中具有重要作用。本論文提出了一種基于深度神經網絡模型的測井曲線生成方法。該方法通過對測井數據進行處理和轉化,得到數據集,并構建了多層感知機(MLP)神經網絡模型,訓練模型并對其進行了驗證。實驗結果表明,該方法能夠生成具有較高精度和準確性的測井曲線,并具有較強的實用性和廣泛適用性。關鍵詞:測井曲線;深度神經網絡;多層感知機;數據處理AbstractWellloggingcurveisacommonlyusedtoolinoilfieldexplorationanddevelopment,whichplaysanimportantroleingeologicalanalysisandoilandgasreservesprediction.Inthispaper,weproposeamethodofwellloggingcurvegenerationbasedondeepneuralnetworkmodel.Byprocessingandtransformingthewellloggingdata,thedatasetisobtained,andthemulti-layerperceptron(MLP)neuralnetworkmodelisconstructed,andthemodelistrainedandverified.Theexperimentalresultsshowthattheproposedmethodcangeneratewellloggingcurveswithhighaccuracyandprecisionandhasstrongpracticalityandwideapplicability.Keywords:wellloggingcurve;deepneuralnetwork;multi-layerperceptron;dataprocessing1.IntroductionWellloggingisamethodformeasuringphysicalpropertiesofrocksandsoilsinaborehole.Throughtheanalysisofthevariationsinthedataofthewellloggingcurves,basicphysicalparametersoftherocks,suchasdensity,porosity,andsaturation,canbeobtained.Thesephysicalparametersprovidethebasisforreservoirevaluation,fluididentification,andformationevaluation.However,theaccuracyofwellloggingdataisinfluencedbymanyfactors,suchasboreholeconditions,measurementtools,anddataacquisitionmethods,whichmayresultindatadeviatingfromtheactualvaluesinvaryingdegrees.Toimprovetheaccuracyofwellloggingdataandpromotethedevelopmentofoilandgasexplorationanddevelopment,manymethodshavebeenproposed.Thesemethodsincludestatisticalmethods,physicalmodelingmethods,andmachinelearningmethods[1].Amongthem,machinelearningmethodshavebecomeincreasinglypopularinrecentyears,andhaveshowngreatpotentialinoilfielddataanalysisandprocessing[2].Asawidelyusedmachinelearningmethod,deepneuralnetwork(DNN)hasattractedmuchattentionduetoitspowerfulfeatureextractionandmodelingability[3][4].DNNcanlearncomplexnon-linearrelationshipsamongmassivedataandextractmulti-levelfeaturesfromthedata,whichhasshowngoodperformanceinmanyfields,suchasnaturallanguageprocessing,computervision,andspeechrecognition.Inthispaper,weproposeamethodofwellloggingcurvegenerationbasedondeepneuralnetworkmodel.TheproposedmethodpreprocesseswellloggingdatatoobtainadatasetandconstructsaMLPneuralnetworkmodeltogeneratewellloggingcurves.Theexperimentalresultsshowthattheproposedmethodcangeneratewellloggingcurveswithhighaccuracyandprecision.Therestofthispaperisorganizedasfollows.Section2presentsrelatedworks.Section3describestheproposedmethod.Section4presentstheexperimentalresultsandanalysis.Section5concludesthepaperandsuggestsfuturework.2.RelatedworksInrecentyears,manyresearchershavestudiedwellloggingdataanalysisandmodelingusingmachinelearningmethods.Forexample,Lietal.proposedanewmethodforformationevaluationusingfuzzylogic[5].Zhaoetal.proposedanimprovedsupportvectorregressionmodelforpredictingporosityusingwellloggingdata[6].Zhangetal.usedmachinelearningmethodstoidentifyoilandwatersaturationfromwellloggingdata[7].Allthesemethodshaveachievedgoodperformanceindifferentaspectsofwellloggingdataprocessing.DNNhasalsobeenappliedtowellloggingdataanalysis,andhasshownitsgreatpotentialincharacterizingtheformationpropertiesofrocks[8].Forexample,Xingetal.proposedaconvolutionalneuralnetwork(CNN)modelforwelllogprediction[9].Wangetal.usedaDNNmodeltopredictporositythroughtheintegrationofwelllogging,geological,andpetrophysicaldata[10].Zhouetal.proposedahierarchicalclassificationmethodbasedonDNNandachievedgoodresultsintheidentificationofoilandwater[11].However,comparedwithtraditionalwellloggingdataprocessingmethods,usingDNNforwellloggingcurvegenerationhasbeenlessstudied,andonlyafewmethodshavebeenproposed.Chengetal.proposedanewmethodofwellloggingcurvereconstructionbasedonDNN,whichcaneffectivelyrestoreaccurateloggingcurveinformationfromtheartificiallydamagedloggingcurves[12].Zhangetal.proposedamethodofwellloggingcurvegenerationbasedonrecurrentneuralnetwork,butthegeneratedwellloggingcurvesdidnothavehighaccuracyandprecision[13].Inthispaper,weproposeanewmethodofwellloggingcurvegenerationbasedonMLPneuralnetwork,whichcangeneratewellloggingcurveswithhighaccuracyandprecision.3.Methodology3.1DatapreprocessingTherawwellloggingdataisusuallyverylargeandcomplex,andmaycontainnoise,outliers,andmissingvalues.Togenerateaccuratewellloggingcurves,datapreprocessingisnecessary.Thefirststepofdatapreprocessingistoeliminatenoiseandoutliers.Inthispaper,weusethemovingaveragemethodtosmoothandfilterthedata.Themovingaveragemethodreplaceseachpointofthetimeseriesdatawiththeaverageofitsneighboringpoints.Thesecondstepistodealwithmissingvalues.Missingvaluesmayoccurduetoincompleteorfaultymeasurement,orbecausetheloggingtooldoesnotrecorddataforcertainintervals.Themostcommonmethodfordealingwithmissingvaluesistoperforminterpolation.Weusethelinearinterpolationmethodtofillinmissingvalues.Thelaststepofdatapreprocessingisdatanormalization.Datanormalizationisnecessaryforneuralnetworktrainingtoachievebetterperformance.Weusethemin-maxnormalizationmethodtonormalizethedata,whichmapstheoriginaldatatoarangeof[0,1].3.2MLPneuralnetworkMLPisatypeoffeedforwardneuralnetworkthatconsistsofmultiplelayersofnodes,witheachnodefullyconnectedtothenodesinthepreviousandthenextlayers[14].MLPhasbeenwidelyusedinmanyfields,suchaspatternrecognition,speechrecognition,andtimeseriesanalysis.Inthispaper,weuseMLPtogeneratewellloggingcurves.TheinputlayeroftheMLPconsistsofsevennodes,representingdifferentattributesofthewellloggingdata,includinggammaray,resistivity,density,neutron,deepresistivity,shallowresistivity,andspontaneouspotential.TheoutputlayeroftheMLPconsistsofonenode,representingthepredictedcurve.TheMLPhasthreehiddenlayers,eachhaving100,50,and25nodes,respectively.Theactivationfunctionofthehiddenlayersistherectifiedlinearunit(ReLU)function,whichcaneffectivelyimprovetheconvergencerateandtheclassificationperformanceoftheneuralnetwork[15].Theactivationfunctionoftheoutputlayeristheidentityfunction,whichisusedtoobtainthecontinuouspredictionvalues.3.3TrainingandvalidationTheproposedMLPneuralnetworkistrainedandevaluatedusingthewellloggingdatafromacertainoilfield.Thefirst90%ofthedataisusedfortraining,andthelast10%isusedforvalidation.Duringthetrainingprocess,themeansquarederror(MSE)isusedastheobjectivefunctiontooptimizetheneuralnetworkparameters.TheMSEmeasurestheaverageofthesquareddifferencesbetweenthepredictedandactualvalues.Thetrainingalgorithmusedinthispaperisthebackpropagationalgorithm,whichiswidelyusedinneuralnetworktraining.Thelearningrateofthebackpropagationalgorithmissetto0.01,andthebatchsizeissetto64.ThetrainingprocessstopswhenthevalidationMSEnolongerdecreases.Thetrainedneuralnetworkissavedandusedforwellloggingcurvegeneration.4.ExperimentalresultsandanalysisToevaluatetheperformanceoftheproposedmethod,wecomparethepredictedwellloggingcurveswiththeactualcurves.Thecomparisonisdoneintermsofthemeansquarederror(MSE),thecorrelationcoefficient(R),andthevisualization.TheMSEandRarecommonmetricstoevaluatetheaccuracyandprecisionofdataprediction.Table1.Comparisonofthepredictedandactualwellloggingcurves|Curve|TrainingMSE|ValidationMSE|Correlationcoefficient||------------|-------------|----------------|-------------------------||Gammaray|0.0023|0.0028|0.9751||Resistivity|0.0017|0.0021|0.9846||Density|0.0056|0.0063|0.9528|AsshowninTable1,thetrainingandvalidationMSEsofthepredictedcurvesareverysmall,whichmeansthattheneuralnetworkcanfitthedataverywell.Thecorrelationcoefficientsofthepredictedcurvesarecloseto1,indicatingthatthepredictedcurveshaveahighcorrelationwiththeactualcurves.Figure1.VisualizationofthepredictedandactualwellloggingcurvesAsshowninFigure1,thepredictedcurvesandtheactualcurveshav
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中國CVD設備行業(yè)市場調研及未來發(fā)展趨勢預測報告
- 2020-2025年中國臉部注射劑行業(yè)市場調研分析及投資戰(zhàn)略規(guī)劃報告
- 2025年塑料靴鞋項目可行性研究報告
- 2023-2028年中國電視新聞行業(yè)發(fā)展監(jiān)測及市場發(fā)展?jié)摿︻A測報告
- 2020-2025年中國廈門市養(yǎng)老機構行業(yè)市場調查研究及投資前景預測報告
- 2025年化纖漿項目可行性研究報告
- 電化學處理機行業(yè)行業(yè)發(fā)展趨勢及投資戰(zhàn)略研究分析報告
- 【可行性報告】2024年智慧物流相關項目可行性研究報告
- 2025年中國人參提取物行業(yè)市場運營現狀及投資戰(zhàn)略咨詢報告
- 2024年工業(yè)污水處理項目評估報告
- GB/T 43700-2024滑雪場所的運行和管理規(guī)范
- 魯迅《社戲》原文+賞析
- 部編版道德與法治三年級下冊教案全冊
- 幼兒教師之《幼兒游戲與指導》考試題庫(通用版)
- 中國建設銀行養(yǎng)老金融模式發(fā)展問題研究
- 關于布郎芬布倫納發(fā)展心理學生態(tài)系統(tǒng)理論
- 我們身邊的法律故事課件
- 執(zhí)行律師服務方案
- GB 24544-2023墜落防護速差自控器
- 2023年11月上海市教育委員會教育技術裝備中心公開招考3名工作人員筆試歷年高頻考點(難、易錯點薈萃)附帶答案詳解
- 煤礦違章行為及預防
評論
0/150
提交評論