一種基于深度神經網絡模型的測井曲線生成方法_第1頁
一種基于深度神經網絡模型的測井曲線生成方法_第2頁
一種基于深度神經網絡模型的測井曲線生成方法_第3頁
一種基于深度神經網絡模型的測井曲線生成方法_第4頁
一種基于深度神經網絡模型的測井曲線生成方法_第5頁
全文預覽已結束

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

一種基于深度神經網絡模型的測井曲線生成方法摘要測井曲線是油田勘探和開發(fā)中常用的一種工具,在地層分析和油氣儲量預測中具有重要作用。本論文提出了一種基于深度神經網絡模型的測井曲線生成方法。該方法通過對測井數據進行處理和轉化,得到數據集,并構建了多層感知機(MLP)神經網絡模型,訓練模型并對其進行了驗證。實驗結果表明,該方法能夠生成具有較高精度和準確性的測井曲線,并具有較強的實用性和廣泛適用性。關鍵詞:測井曲線;深度神經網絡;多層感知機;數據處理AbstractWellloggingcurveisacommonlyusedtoolinoilfieldexplorationanddevelopment,whichplaysanimportantroleingeologicalanalysisandoilandgasreservesprediction.Inthispaper,weproposeamethodofwellloggingcurvegenerationbasedondeepneuralnetworkmodel.Byprocessingandtransformingthewellloggingdata,thedatasetisobtained,andthemulti-layerperceptron(MLP)neuralnetworkmodelisconstructed,andthemodelistrainedandverified.Theexperimentalresultsshowthattheproposedmethodcangeneratewellloggingcurveswithhighaccuracyandprecisionandhasstrongpracticalityandwideapplicability.Keywords:wellloggingcurve;deepneuralnetwork;multi-layerperceptron;dataprocessing1.IntroductionWellloggingisamethodformeasuringphysicalpropertiesofrocksandsoilsinaborehole.Throughtheanalysisofthevariationsinthedataofthewellloggingcurves,basicphysicalparametersoftherocks,suchasdensity,porosity,andsaturation,canbeobtained.Thesephysicalparametersprovidethebasisforreservoirevaluation,fluididentification,andformationevaluation.However,theaccuracyofwellloggingdataisinfluencedbymanyfactors,suchasboreholeconditions,measurementtools,anddataacquisitionmethods,whichmayresultindatadeviatingfromtheactualvaluesinvaryingdegrees.Toimprovetheaccuracyofwellloggingdataandpromotethedevelopmentofoilandgasexplorationanddevelopment,manymethodshavebeenproposed.Thesemethodsincludestatisticalmethods,physicalmodelingmethods,andmachinelearningmethods[1].Amongthem,machinelearningmethodshavebecomeincreasinglypopularinrecentyears,andhaveshowngreatpotentialinoilfielddataanalysisandprocessing[2].Asawidelyusedmachinelearningmethod,deepneuralnetwork(DNN)hasattractedmuchattentionduetoitspowerfulfeatureextractionandmodelingability[3][4].DNNcanlearncomplexnon-linearrelationshipsamongmassivedataandextractmulti-levelfeaturesfromthedata,whichhasshowngoodperformanceinmanyfields,suchasnaturallanguageprocessing,computervision,andspeechrecognition.Inthispaper,weproposeamethodofwellloggingcurvegenerationbasedondeepneuralnetworkmodel.TheproposedmethodpreprocesseswellloggingdatatoobtainadatasetandconstructsaMLPneuralnetworkmodeltogeneratewellloggingcurves.Theexperimentalresultsshowthattheproposedmethodcangeneratewellloggingcurveswithhighaccuracyandprecision.Therestofthispaperisorganizedasfollows.Section2presentsrelatedworks.Section3describestheproposedmethod.Section4presentstheexperimentalresultsandanalysis.Section5concludesthepaperandsuggestsfuturework.2.RelatedworksInrecentyears,manyresearchershavestudiedwellloggingdataanalysisandmodelingusingmachinelearningmethods.Forexample,Lietal.proposedanewmethodforformationevaluationusingfuzzylogic[5].Zhaoetal.proposedanimprovedsupportvectorregressionmodelforpredictingporosityusingwellloggingdata[6].Zhangetal.usedmachinelearningmethodstoidentifyoilandwatersaturationfromwellloggingdata[7].Allthesemethodshaveachievedgoodperformanceindifferentaspectsofwellloggingdataprocessing.DNNhasalsobeenappliedtowellloggingdataanalysis,andhasshownitsgreatpotentialincharacterizingtheformationpropertiesofrocks[8].Forexample,Xingetal.proposedaconvolutionalneuralnetwork(CNN)modelforwelllogprediction[9].Wangetal.usedaDNNmodeltopredictporositythroughtheintegrationofwelllogging,geological,andpetrophysicaldata[10].Zhouetal.proposedahierarchicalclassificationmethodbasedonDNNandachievedgoodresultsintheidentificationofoilandwater[11].However,comparedwithtraditionalwellloggingdataprocessingmethods,usingDNNforwellloggingcurvegenerationhasbeenlessstudied,andonlyafewmethodshavebeenproposed.Chengetal.proposedanewmethodofwellloggingcurvereconstructionbasedonDNN,whichcaneffectivelyrestoreaccurateloggingcurveinformationfromtheartificiallydamagedloggingcurves[12].Zhangetal.proposedamethodofwellloggingcurvegenerationbasedonrecurrentneuralnetwork,butthegeneratedwellloggingcurvesdidnothavehighaccuracyandprecision[13].Inthispaper,weproposeanewmethodofwellloggingcurvegenerationbasedonMLPneuralnetwork,whichcangeneratewellloggingcurveswithhighaccuracyandprecision.3.Methodology3.1DatapreprocessingTherawwellloggingdataisusuallyverylargeandcomplex,andmaycontainnoise,outliers,andmissingvalues.Togenerateaccuratewellloggingcurves,datapreprocessingisnecessary.Thefirststepofdatapreprocessingistoeliminatenoiseandoutliers.Inthispaper,weusethemovingaveragemethodtosmoothandfilterthedata.Themovingaveragemethodreplaceseachpointofthetimeseriesdatawiththeaverageofitsneighboringpoints.Thesecondstepistodealwithmissingvalues.Missingvaluesmayoccurduetoincompleteorfaultymeasurement,orbecausetheloggingtooldoesnotrecorddataforcertainintervals.Themostcommonmethodfordealingwithmissingvaluesistoperforminterpolation.Weusethelinearinterpolationmethodtofillinmissingvalues.Thelaststepofdatapreprocessingisdatanormalization.Datanormalizationisnecessaryforneuralnetworktrainingtoachievebetterperformance.Weusethemin-maxnormalizationmethodtonormalizethedata,whichmapstheoriginaldatatoarangeof[0,1].3.2MLPneuralnetworkMLPisatypeoffeedforwardneuralnetworkthatconsistsofmultiplelayersofnodes,witheachnodefullyconnectedtothenodesinthepreviousandthenextlayers[14].MLPhasbeenwidelyusedinmanyfields,suchaspatternrecognition,speechrecognition,andtimeseriesanalysis.Inthispaper,weuseMLPtogeneratewellloggingcurves.TheinputlayeroftheMLPconsistsofsevennodes,representingdifferentattributesofthewellloggingdata,includinggammaray,resistivity,density,neutron,deepresistivity,shallowresistivity,andspontaneouspotential.TheoutputlayeroftheMLPconsistsofonenode,representingthepredictedcurve.TheMLPhasthreehiddenlayers,eachhaving100,50,and25nodes,respectively.Theactivationfunctionofthehiddenlayersistherectifiedlinearunit(ReLU)function,whichcaneffectivelyimprovetheconvergencerateandtheclassificationperformanceoftheneuralnetwork[15].Theactivationfunctionoftheoutputlayeristheidentityfunction,whichisusedtoobtainthecontinuouspredictionvalues.3.3TrainingandvalidationTheproposedMLPneuralnetworkistrainedandevaluatedusingthewellloggingdatafromacertainoilfield.Thefirst90%ofthedataisusedfortraining,andthelast10%isusedforvalidation.Duringthetrainingprocess,themeansquarederror(MSE)isusedastheobjectivefunctiontooptimizetheneuralnetworkparameters.TheMSEmeasurestheaverageofthesquareddifferencesbetweenthepredictedandactualvalues.Thetrainingalgorithmusedinthispaperisthebackpropagationalgorithm,whichiswidelyusedinneuralnetworktraining.Thelearningrateofthebackpropagationalgorithmissetto0.01,andthebatchsizeissetto64.ThetrainingprocessstopswhenthevalidationMSEnolongerdecreases.Thetrainedneuralnetworkissavedandusedforwellloggingcurvegeneration.4.ExperimentalresultsandanalysisToevaluatetheperformanceoftheproposedmethod,wecomparethepredictedwellloggingcurveswiththeactualcurves.Thecomparisonisdoneintermsofthemeansquarederror(MSE),thecorrelationcoefficient(R),andthevisualization.TheMSEandRarecommonmetricstoevaluatetheaccuracyandprecisionofdataprediction.Table1.Comparisonofthepredictedandactualwellloggingcurves|Curve|TrainingMSE|ValidationMSE|Correlationcoefficient||------------|-------------|----------------|-------------------------||Gammaray|0.0023|0.0028|0.9751||Resistivity|0.0017|0.0021|0.9846||Density|0.0056|0.0063|0.9528|AsshowninTable1,thetrainingandvalidationMSEsofthepredictedcurvesareverysmall,whichmeansthattheneuralnetworkcanfitthedataverywell.Thecorrelationcoefficientsofthepredictedcurvesarecloseto1,indicatingthatthepredictedcurveshaveahighcorrelationwiththeactualcurves.Figure1.VisualizationofthepredictedandactualwellloggingcurvesAsshowninFigure1,thepredictedcurvesandtheactualcurveshav

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論