版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學年甘肅省天水市第六中學高三下學期五校協(xié)作體期初考試數(shù)學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知變量的幾組取值如下表:12347若與線性相關(guān),且,則實數(shù)()A. B. C. D.2.已知.給出下列判斷:①若,且,則;②存在使得的圖象向右平移個單位長度后得到的圖象關(guān)于軸對稱;③若在上恰有7個零點,則的取值范圍為;④若在上單調(diào)遞增,則的取值范圍為.其中,判斷正確的個數(shù)為()A.1 B.2 C.3 D.43.在中,內(nèi)角所對的邊分別為,若依次成等差數(shù)列,則()A.依次成等差數(shù)列 B.依次成等差數(shù)列C.依次成等差數(shù)列 D.依次成等差數(shù)列4.如圖,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,則該幾何體的表面積()A. B. C. D.5.2019年10月1日,中華人民共和國成立70周年,舉國同慶.將2,0,1,9,10這5個數(shù)字按照任意次序排成一行,拼成一個6位數(shù),則產(chǎn)生的不同的6位數(shù)的個數(shù)為A.96 B.84 C.120 D.3606.函數(shù)的圖象大致是()A. B.C. D.7.已知函數(shù),,且,則()A.3 B.3或7 C.5 D.5或88.已知函數(shù)是上的偶函數(shù),是的奇函數(shù),且,則的值為()A. B. C. D.9.已知拋物線,過拋物線上兩點分別作拋物線的兩條切線為兩切線的交點為坐標原點若,則直線與的斜率之積為()A. B. C. D.10.設(shè)命題函數(shù)在上遞增,命題在中,,下列為真命題的是()A. B. C. D.11.已知數(shù)列中,,若對于任意的,不等式恒成立,則實數(shù)的取值范圍為()A. B.C. D.12.已知集合,,,則的子集共有()A.個 B.個 C.個 D.個二、填空題:本題共4小題,每小題5分,共20分。13.已知隨機變量服從正態(tài)分布,,則__________.14.已知數(shù)列的前項和且,設(shè),則的值等于_______________.15.在數(shù)列中,已知,則數(shù)列的的前項和為__________.16.如圖,已知圓內(nèi)接四邊形ABCD,其中,,,,則__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)當時,求曲線在點的切線方程;(2)討論函數(shù)的單調(diào)性.18.(12分)已知數(shù)列滿足:對一切成立.(1)求數(shù)列的通項公式;(2)求數(shù)列的前項和.19.(12分)在等比數(shù)列中,已知,.設(shè)數(shù)列的前n項和為,且,(,).(1)求數(shù)列的通項公式;(2)證明:數(shù)列是等差數(shù)列;(3)是否存在等差數(shù)列,使得對任意,都有?若存在,求出所有符合題意的等差數(shù)列;若不存在,請說明理由.20.(12分)在中,、、的對應邊分別為、、,已知,,.(1)求;(2)設(shè)為中點,求的長.21.(12分)某超市在節(jié)日期間進行有獎促銷,規(guī)定凡在該超市購物滿400元的顧客,均可獲得一次摸獎機會.摸獎規(guī)則如下:獎盒中放有除顏色不同外其余完全相同的4個球(紅、黃、黑、白).顧客不放回的每次摸出1個球,若摸到黑球則摸獎停止,否則就繼續(xù)摸球.按規(guī)定摸到紅球獎勵20元,摸到白球或黃球獎勵10元,摸到黑球不獎勵.(1)求1名顧客摸球2次摸獎停止的概率;(2)記X為1名顧客摸獎獲得的獎金數(shù)額,求隨機變量X的分布列和數(shù)學期望.22.(10分)已知函數(shù).(1)求不等式的解集;(2)若存在實數(shù),使得不等式成立,求實數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
求出,把坐標代入方程可求得.【詳解】據(jù)題意,得,所以,所以.故選:B.【點睛】本題考查線性回歸直線方程,由性質(zhì)線性回歸直線一定過中心點可計算參數(shù)值.2、B【解析】
對函數(shù)化簡可得,進而結(jié)合三角函數(shù)的最值、周期性、單調(diào)性、零點、對稱性及平移變換,對四個命題逐個分析,可選出答案.【詳解】因為,所以周期.對于①,因為,所以,即,故①錯誤;對于②,函數(shù)的圖象向右平移個單位長度后得到的函數(shù)為,其圖象關(guān)于軸對稱,則,解得,故對任意整數(shù),,所以②錯誤;對于③,令,可得,則,因為,所以在上第1個零點,且,所以第7個零點,若存在第8個零點,則,所以,即,解得,故③正確;對于④,因為,且,所以,解得,又,所以,故④正確.故選:B.【點睛】本題考查三角函數(shù)的恒等變換,考查三角函數(shù)的平移變換、最值、周期性、單調(diào)性、零點、對稱性,考查學生的計算求解能力與推理能力,屬于中檔題.3、C【解析】
由等差數(shù)列的性質(zhì)、同角三角函數(shù)的關(guān)系以及兩角和的正弦公式可得,由正弦定理可得,再由余弦定理可得,從而可得結(jié)果.【詳解】依次成等差數(shù)列,,正弦定理得,由余弦定理得,,即依次成等差數(shù)列,故選C.【點睛】本題主要考查等差數(shù)列的定義、正弦定理、余弦定理,屬于難題.解三角形時,有時可用正弦定理,有時也可用余弦定理,應注意用哪一個定理更方便、簡捷.如果式子中含有角的余弦或邊的二次式,要考慮用余弦定理;如果遇到的式子中含有角的正弦或邊的一次式時,則考慮用正弦定理;以上特征都不明顯時,則要考慮兩個定理都有可能用到.4、C【解析】
畫出幾何體的直觀圖,利用三視圖的數(shù)據(jù)求解幾何體的表面積即可.【詳解】解:幾何體的直觀圖如圖,是正方體的一部分,P?ABC,正方體的棱長為2,
該幾何體的表面積:.故選C.【點睛】本題考查三視圖求解幾何體的直觀圖的表面積,判斷幾何體的形狀是解題的關(guān)鍵.5、B【解析】
2,0,1,9,10按照任意次序排成一行,得所有不以0開頭的排列數(shù)共個,其中含有2個10的排列數(shù)共個,所以產(chǎn)生的不同的6位數(shù)的個數(shù)為.故選B.6、C【解析】
根據(jù)函數(shù)奇偶性可排除AB選項;結(jié)合特殊值,即可排除D選項.【詳解】∵,,∴函數(shù)為奇函數(shù),∴排除選項A,B;又∵當時,,故選:C.【點睛】本題考查了依據(jù)函數(shù)解析式選擇函數(shù)圖象,注意奇偶性及特殊值的用法,屬于基礎(chǔ)題.7、B【解析】
根據(jù)函數(shù)的對稱軸以及函數(shù)值,可得結(jié)果.【詳解】函數(shù),若,則的圖象關(guān)于對稱,又,所以或,所以的值是7或3.故選:B.【點睛】本題考查的是三角函數(shù)的概念及性質(zhì)和函數(shù)的對稱性問題,屬基礎(chǔ)題8、B【解析】
根據(jù)函數(shù)的奇偶性及題設(shè)中關(guān)于與關(guān)系,轉(zhuǎn)換成關(guān)于的關(guān)系式,通過變形求解出的周期,進而算出.【詳解】為上的奇函數(shù),,而函數(shù)是上的偶函數(shù),,,故為周期函數(shù),且周期為故選:B【點睛】本題主要考查了函數(shù)的奇偶性,函數(shù)的周期性的應用,屬于基礎(chǔ)題.9、A【解析】
設(shè)出A,B的坐標,利用導數(shù)求出過A,B的切線的斜率,結(jié)合,可得x1x2=﹣1.再寫出OA,OB所在直線的斜率,作積得答案.【詳解】解:設(shè)A(),B(),由拋物線C:x2=1y,得,則y′.∴,,由,可得,即x1x2=﹣1.又,,∴.故選:A.點睛:(1)本題主要考查拋物線的簡單幾何性質(zhì),考查直線和拋物線的位置關(guān)系,意在考查學生對這些基礎(chǔ)知識的掌握能力和分析推理能力.(2)解答本題的關(guān)鍵是解題的思路,由于與切線有關(guān),所以一般先設(shè)切點,先設(shè)A,B,,再求切線PA,PB方程,求點P坐標,再根據(jù)得到最后求直線與的斜率之積.如果先設(shè)點P的坐標,計算量就大一些.10、C【解析】
命題:函數(shù)在上單調(diào)遞減,即可判斷出真假.命題:在中,利用余弦函數(shù)單調(diào)性判斷出真假.【詳解】解:命題:函數(shù),所以,當時,,即函數(shù)在上單調(diào)遞減,因此是假命題.命題:在中,在上單調(diào)遞減,所以,是真命題.則下列命題為真命題的是.故選:C.【點睛】本題考查了函數(shù)的單調(diào)性、正弦定理、三角形邊角大小關(guān)系、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于基礎(chǔ)題.11、B【解析】
先根據(jù)題意,對原式進行化簡可得,然后利用累加法求得,然后不等式恒成立轉(zhuǎn)化為恒成立,再利用函數(shù)性質(zhì)解不等式即可得出答案.【詳解】由題,即由累加法可得:即對于任意的,不等式恒成立即令可得且即可得或故選B【點睛】本題主要考查了數(shù)列的通項的求法以及函數(shù)的性質(zhì)的運用,屬于綜合性較強的題目,解題的關(guān)鍵是能夠由遞推數(shù)列求出通項公式和后面的轉(zhuǎn)化函數(shù),屬于難題.12、B【解析】
根據(jù)集合中的元素,可得集合,然后根據(jù)交集的概念,可得,最后根據(jù)子集的概念,利用計算,可得結(jié)果.【詳解】由題可知:,當時,當時,當時,當時,所以集合則所以的子集共有故選:B【點睛】本題考查集合的運算以及集合子集個數(shù)的計算,當集合中有元素時,集合子集的個數(shù)為,真子集個數(shù)為,非空子集為,非空真子集為,屬基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、0.22.【解析】
正態(tài)曲線關(guān)于x=μ對稱,根據(jù)對稱性以及概率和為1求解即可?!驹斀狻俊军c睛】本題考查正態(tài)分布曲線的特點及曲線所表示的意義,是一個基礎(chǔ)題.14、7【解析】
根據(jù)題意,當時,,可得,進而得數(shù)列為等比數(shù)列,再計算可得,進而可得結(jié)論.【詳解】由題意,當時,,又,解得,當時,由,所以,,即,故數(shù)列是以為首項,為公比的等比數(shù)列,故,又,,所以,.故答案為:.【點睛】本題考查了數(shù)列遞推關(guān)系、函數(shù)求值,考查了推理能力與計算能力,計算得是解決本題的關(guān)鍵,屬于中檔題.15、【解析】
由已知數(shù)列遞推式可得數(shù)列的所有奇數(shù)項與偶數(shù)項分別構(gòu)成以2為公比的等比數(shù)列,求其通項公式,得到,再由求解.【詳解】解:由,得,,則數(shù)列的所有奇數(shù)項與偶數(shù)項分別構(gòu)成以2為公比的等比數(shù)列.,..故答案為:.【點睛】本題考查數(shù)列遞推式,考查等差數(shù)列與等比數(shù)列的通項公式,訓練了數(shù)列的分組求和,屬于中檔題.16、【解析】
由題意可知,,在和中,利用余弦定理建立方程求,同理求,求,代入求值.【詳解】由圓內(nèi)接四邊形的性質(zhì)可得,.連接BD,在中,有.在中,.所以,則,所以.連接AC,同理可得,所以.所以.故答案為:【點睛】本題考查余弦定理解三角形,同角三角函數(shù)基本關(guān)系,意在考查方程思想,計算能力,屬于中檔題型,本題的關(guān)鍵是熟悉圓內(nèi)接四邊形的性質(zhì),對角互補.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)當時,在上單調(diào)遞增,在上單調(diào)遞減;當時,在和上單調(diào)遞增,在上單調(diào)遞減;當時,在上單調(diào)遞增;當時,在和上單調(diào)遞增,在上單調(diào)遞減.【解析】
(1)根據(jù)導數(shù)的幾何意義求解即可.(2)易得函數(shù)定義域是,且.故分,和與四種情況,分別分析得極值點的關(guān)系進而求得原函數(shù)的單調(diào)性即可.【詳解】(1)當時,,則切線的斜率為.又,則曲線在點的切線方程是,即.(2)的定義域是..①當時,,所以當時,;當時,,所以在上單調(diào)遞增,在上單調(diào)遞減;②當時,,所以當和時,;當時,,所以在和上單調(diào)遞增,在上單調(diào)遞減;③當時,,所以在上恒成立.所以在上單調(diào)遞增;④當時,,所以和時,;時,.所以在和上單調(diào)遞增,在上單調(diào)遞減.綜上所述,當時,在上單調(diào)遞增,在上單調(diào)遞減;當時,在和上單調(diào)遞增,在上單調(diào)遞減;當時,在上單調(diào)遞增;當時,在和上單調(diào)遞增,在上單調(diào)遞減.【點睛】本題主要考查了導數(shù)的幾何意義以及含參數(shù)的函數(shù)單調(diào)性討論,需要根據(jù)題意求函數(shù)的極值點,再根據(jù)極值點的大小關(guān)系分類討論即可.屬于??碱}.18、(1);(2)【解析】
(1)先通過求得,再由得,和條件中的式子作差可得答案;(2)變形可得,通過裂項求和法可得答案.【詳解】(1)①,當時,,,當時,②,①②得:,,適合,故;(2),.【點睛】本題考查法求數(shù)列的通項公式,考查裂項求和,是基礎(chǔ)題.19、(1)(2)見解析(3)存在唯一的等差數(shù)列,其通項公式為,滿足題設(shè)【解析】
(1)由,可得公比,即得;(2)由(1)和可得數(shù)列的遞推公式,即可知結(jié)果為常數(shù),即得證;(3)由(2)可得數(shù)列的通項公式,,設(shè)出等差數(shù)列,再根據(jù)不等關(guān)系來算出的首項和公差即可.【詳解】(1)設(shè)等比數(shù)列的公比為q,因為,,所以,解得.所以數(shù)列的通項公式為:.(2)由(1)得,當,時,可得①,②②①得,,則有,即,,.因為,由①得,,所以,所以,.所以數(shù)列是以為首項,1為公差的等差數(shù)列.(3)由(2)得,所以,.假設(shè)存在等差數(shù)列,其通項,使得對任意,都有,即對任意,都有.③首先證明滿足③的.若不然,,則,或.(i)若,則當,時,,這與矛盾.(ii)若,則當,時,.而,,所以.故,這與矛盾.所以.其次證明:當時,.因為,所以在上單調(diào)遞增,所以,當時,.所以當,時,.再次證明.(iii)若時,則當,,,,這與③矛盾.(iv)若時,同(i)可得矛盾.所以.當時,因為,,所以對任意,都有.所以,.綜上,存在唯一的等差數(shù)列,其通項公式為,滿足題設(shè).【點睛】本題考查求等比數(shù)列通項公式,證明等差數(shù)列,以及數(shù)列中的探索性問題,是一道數(shù)列綜合題,考查學生的分析,推理能力.20、(1);(2).【解析】
(1)直接根據(jù)特殊角的三角函數(shù)值求出,結(jié)合正弦定理求出;(2)結(jié)合第一問的結(jié)論以及余弦定理即可求解.【詳解】解:(1)∵,且,∴,由正弦定理,∴,∵∴銳角,∴(2)∵,∴∴∴在中,由余弦定理得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 食品加工買賣合同范本
- 畫廊墻面施工合同協(xié)議
- 圖書館消防改造施工合同模板
- 二零二五年家用電器回收處理與資源化利用合同3篇
- 二零二五年度企業(yè)規(guī)模擴張貸款協(xié)議樣本3篇
- 2025版電機技術(shù)研發(fā)與成果轉(zhuǎn)化合作協(xié)議3篇
- 零售業(yè)區(qū)域經(jīng)理聘任協(xié)議
- 2025年凱悅酒店客房預訂與退房管理合同3篇
- 舞蹈教師聘任合同范本
- 輕工業(yè)廠房租賃協(xié)議
- 大連市甘井子區(qū)大連匯文中學2022-2023學年七年級上學期期末數(shù)學試題【帶答案】
- 【人民日報】72則金句期末評語模板-每頁6張
- 會計研究方法論智慧樹知到期末考試答案章節(jié)答案2024年長安大學
- 2023-2024學年福建省泉州九年級(上)期末英語試卷
- RB/T 140-2023空中乘務教育培訓服務認證要求
- 2024年中國航空油料集團有限公司校園招聘考試試題必考題
- 知識圖譜智慧樹知到期末考試答案章節(jié)答案2024年浙江大學
- 《灰塵的旅行》導讀
- 高血壓患者不遵醫(yī)飲食行為的原因分析及對策
- 60周歲以上的老年人換領(lǐng)C1駕照三力測試題答案
- 社區(qū)依法執(zhí)業(yè)培訓課件
評論
0/150
提交評論