中考數(shù)學必考二次函數(shù)綜合題詳解總結(jié)_第1頁
中考數(shù)學必考二次函數(shù)綜合題詳解總結(jié)_第2頁
中考數(shù)學必考二次函數(shù)綜合題詳解總結(jié)_第3頁
中考數(shù)學必考二次函數(shù)綜合題詳解總結(jié)_第4頁
中考數(shù)學必考二次函數(shù)綜合題詳解總結(jié)_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

中考數(shù)學必考二次函數(shù)綜合題詳解總結(jié)二次函數(shù)有關(guān)的應用題,講解分析1:九年級(3)班數(shù)學興趣小組經(jīng)過市場調(diào)查整理出某種商品在第x天(1≤x≤90,且x為整數(shù))的售價與銷售量的相關(guān)信息如下.已知商品的進價為30元/件,設該商品的售價為y(單位:元/件),每天的銷售量為p(單位:件),每天的銷售利潤為w(單位:元).(1)求出w與x的函數(shù)關(guān)系式;(2)問銷售該商品第幾天時,當天的銷售利潤最大?并求出最大利潤;(3)該商品在銷售過程中,共有多少天每天的銷售利潤不低于5600元?請直接寫出結(jié)果.考點分析:二次函數(shù)的應用;一元一次不等式的應用.題干分析:(1)當0≤x≤50時,設商品的售價y與時間x的函數(shù)關(guān)系式為y=kx+b,由點的坐標利用待定系數(shù)法即可求出此時y關(guān)于x的函數(shù)關(guān)系式,根據(jù)圖形可得出當50<x≤90時,y=90.再結(jié)合給定表格,設每天的銷售量p與時間x的函數(shù)關(guān)系式為p=mx+n,套入數(shù)據(jù)利用待定系數(shù)法即可求出p關(guān)于x的函數(shù)關(guān)系式,根據(jù)銷售利潤=單件利潤×銷售數(shù)量即可得出w關(guān)于x的函數(shù)關(guān)系式;(2)根據(jù)w關(guān)于x的函數(shù)關(guān)系式,分段考慮其最值問題.當0≤x≤50時,結(jié)合二次函數(shù)的性質(zhì)即可求出在此范圍內(nèi)w的最大值;當50<x≤90時,根據(jù)一次函數(shù)的性質(zhì)即可求出在此范圍內(nèi)w的最大值,兩個最大值作比較即可得出結(jié)論;(3)令w≥5600,可得出關(guān)于x的一元二次不等式和一元一次不等式,解不等式即可得出x的取值范圍,由此即可得出結(jié)論.二次函數(shù)的應用問題,就是利用二次函數(shù)的定義、圖象、性質(zhì)解決有關(guān)的實際問題正確解答這類問題,首先要熟練掌握和應用二次函數(shù)的性質(zhì),其次要善于將實際問題轉(zhuǎn)化為二次函數(shù)的問題。二次函數(shù)有關(guān)的動點問題,講解分析2:已知如圖,在平面直角坐標系xOy中,點A、B、C分別為坐標軸上上的三個點,且OA=1,OB=3,OC=4,(1)求經(jīng)過A、B、C三點的拋物線的解析式;(2)在平面直角坐標系xOy中是否存在一點P,使得以以點A、B、C、P為頂點的四邊形為菱形?若存在,請求出點P的坐標;若不存在,請說明理由;(3)若點M為該拋物線上一動點,在(2)的條件下,請求出當|PM﹣AM|的最大值時點M的坐標,并直接寫出|PM﹣AM|的最大值.題干分析:(1)設拋物線的解析式為y=ax2+bx+c,把A,B,C三點坐標代入求出a,b,c的值,即可確定出所求拋物線解析式;(2)在平面直角坐標系xOy中存在一點P,使得以點A、B、C、P為頂點的四邊形為菱形,理由為:根據(jù)OA,OB,OC的長,利用勾股定理求出BC與AC的長相等,只有當BP與AC平行且相等時,四邊形ACBP為菱形,可得出BP的長,由OB的長確定出P的縱坐標,確定出P坐標,當點P在第二、三象限時,以點A、B、C、P為頂點的四邊形只能是平行四邊形,不是菱形;(3)利用待定系數(shù)法確定出直線PA解析式,當點M與點P、A不在同一直線上時,根據(jù)三角形的三邊關(guān)系|PM﹣AM|<PA,當點M與點P、A在同一直線上時,|PM﹣AM|=PA,當點M與點P、A在同一直線上時,|PM﹣AM|的值最大,即點M為直線PA與拋物線的交點,聯(lián)立直線AP與拋物線解析式,求出當|PM﹣AM|的最大值時M坐標,確定出|PM﹣AM|的最大值即可.解題反思:此題屬于二次函數(shù)綜合題,涉及的知識有:二次函數(shù)的性質(zhì),待定系數(shù)法確定拋物線解析式、一次函數(shù)解析式,菱形的判定,以及坐標與圖形性質(zhì),熟練掌握待定系數(shù)法是解本題的關(guān)鍵。?二次函數(shù)一直是中考的熱點問題,以二次函數(shù)為背景而編擬的動點問題,大量地出現(xiàn)在全國各地的壓軸題中。此類題目與動點問題相結(jié)合,技巧性和綜合性較強,涉及的知識面廣,有較強的區(qū)分度。值得注意:解答此類題目對考生綜合分析問題和解決問題的能力要求較高。二次函數(shù)有關(guān)的分類討論問題,講解分析3:如圖1,在平面直角坐標系中,拋物線y=﹣x2/3+2√3x/3+3與x軸交于A,B兩點(點A在點B左側(cè)),與y軸交于點C,拋物線的頂點為點E.(1)判斷△ABC的形狀,并說明理由;(2)經(jīng)過B,C兩點的直線交拋物線的對稱軸于點D,點P為直線BC上方拋物線上的一動點,當△PCD的面積最大時,Q從點P出發(fā),先沿適當?shù)穆窂竭\動到拋物線的對稱軸上點M處,再沿垂直于拋物線對稱軸的方向運動到y(tǒng)軸上的點N處,最后沿適當?shù)穆窂竭\動到點A處停止.當點Q的運動路徑最短時,求點N的坐標及點Q經(jīng)過的最短路徑的長;(3)如圖2,平移拋物線,使拋物線的頂點E在射線AE上移動,點E平移后的對應點為點E′,點A的對應點為點A′,將△AOC繞點O順時針旋轉(zhuǎn)至△A1OC1的位置,點A,C的對應點分別為點A1,C1,且點A1恰好落在AC上,連接C1A′,C1E′,△A′C1E′是否能為等腰三角形?若能,請求出所有符合條件的點E′的坐標;若不能,請說明理由.題干分析:(1)先求出拋物線與x軸和y軸的交點坐標,再用勾股定理的逆定理判斷出△ABC是直角三角形;(2)先求出S△PCD最大時,點P(3√3/2,15/4),然后判斷出所走的路徑最短,即最短路徑的長為PM+MN+NA的長,計算即可;(3)△A′C1E′是等腰三角形,分三種情況分別建立方程計算即可.解題反思:此題是二次函數(shù)綜合題,主要考查了函數(shù)極值的確定方法,等邊三角形的判定和性質(zhì),勾股定理的逆定理,等腰三角形的性質(zhì),解本題的關(guān)鍵是分類討論,也是解本題的難點。試題既關(guān)注了知識間的縱向聯(lián)系(在知識塊層面和知識鏈層面上合理設計),又關(guān)注了知識間的橫向聯(lián)系(加強核心觀念和數(shù)學思想方法的考查),在考查學生思維的靈活性、廣闊性方面具有較高的效度,因此受命題者青睞。二次

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論