




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年貴州省百校大聯(lián)考高二上數(shù)學(xué)期末學(xué)業(yè)水平測試試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知圓與圓,則兩圓的位置關(guān)系是()A.外切 B.內(nèi)切C.相交 D.相離2.已知,,,執(zhí)行如圖所示的程序框圖,輸出值為()A. B.C. D.3.兩個(gè)圓和的位置是關(guān)系是()A.相離 B.外切C.相交 D.內(nèi)含4.拋物線y2=4x的焦點(diǎn)坐標(biāo)是A.(0,2) B.(0,1)C.(2,0) D.(1,0)5.橢圓的焦點(diǎn)坐標(biāo)為()A.和 B.和C.和 D.和6.已知點(diǎn),動(dòng)點(diǎn)P滿足,則點(diǎn)P的軌跡為()A橢圓 B.雙曲線C.拋物線 D.圓7.直線恒過定點(diǎn)()A. B.C. D.8.若雙曲線的焦距為,則雙曲線的漸近線方程為()A. B.C. D.9.甲組數(shù)據(jù)為:5,12,16,21,25,37,乙組數(shù)據(jù)為:1,6,14,18,38,39,則甲、乙的平均數(shù)、極差及中位數(shù)相同的是()A.極差 B.平均數(shù)C.中位數(shù) D.都不相同10.已知是拋物線上的一個(gè)動(dòng)點(diǎn),是圓上的一個(gè)動(dòng)點(diǎn),是一個(gè)定點(diǎn),則的最小值為A. B.C. D.11.若方程表示焦點(diǎn)在y軸上的雙曲線,則k的取值范圍是()A. B.C. D.12.我國古代數(shù)學(xué)典籍《四元玉鑒》中有如下一段話:“河有汛,預(yù)差夫一千八百八十人筑堤,只云初日差六十五人,次日轉(zhuǎn)多七人,今有三日連差三百人,問已差人幾天,差人幾何?”其大意為“官府陸續(xù)派遣1880人前往修筑堤壩,第一天派出65人,從第二天開始每天派出的人數(shù)比前一天多7人.已知最后三天一共派出了300人,則目前一共派出了多少天,派出了多少人?”()A.6天495人 B.7天602人C.8天716人 D.9天795人二、填空題:本題共4小題,每小題5分,共20分。13.如圖是某賽季CBA廣東東莞銀行隊(duì)甲、乙兩名籃球運(yùn)動(dòng)員每場比賽得分的莖葉圖,則甲、乙比賽得分的中位數(shù)之和是______.14.從正方體的8個(gè)頂點(diǎn)中選取4個(gè)作為項(xiàng)點(diǎn),可得到四面體的概率為________15.已知函數(shù)的圖象與x軸相交于A,B兩點(diǎn),與y軸相交于點(diǎn)C,則的外接圓E的方程是________16.若直線與曲線沒有公共點(diǎn),則實(shí)數(shù)的取值范圍是____________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知點(diǎn),,線段是圓的直徑.(1)求圓的方程;(2)過點(diǎn)的直線與圓相交于,兩點(diǎn),且,求直線的方程.18.(12分)已知拋物線的準(zhǔn)線方程是.(Ⅰ)求拋物線方程;(Ⅱ)設(shè)直線與拋物線相交于,兩點(diǎn),為坐標(biāo)原點(diǎn),證明:.19.(12分)某高校在今年的自主招生考試成績中隨機(jī)抽取100名考生的筆試成績,分為5組制出頻率分布表如圖所示.組號(hào)分組頻數(shù)頻率150052350.35330b4cd5100.1(1)求b,c,d的值;(2)該校決定在成績較好的3、4、5組用分層抽樣抽取6名學(xué)生進(jìn)行面試,則每組應(yīng)各抽多少名學(xué)生?(3)在(2)的前提下,從抽到6名學(xué)生中再隨機(jī)抽取2名被甲考官面試,求這2名學(xué)生來自同一組的概率.20.(12分)如圖,在四棱錐中,平面,底面是直角梯形,,,,,為側(cè)棱包含端點(diǎn)上的動(dòng)點(diǎn).(1)當(dāng)時(shí),求證平面;(2)當(dāng)直線與平面所成角的正弦值為時(shí),求二面角的余弦值.21.(12分)如圖,在直三棱柱中,,,,為的中點(diǎn),點(diǎn),分別在棱,上,,.(1)求點(diǎn)到直線的距離(2)求平面與平面夾角的余弦值.22.(10分)已知橢圓:,的左右焦點(diǎn),是雙曲線的左右頂點(diǎn),的離心率為,的離心率為,點(diǎn)在上,過點(diǎn)E和,分別作直線交橢圓于,和,點(diǎn),如圖.(1)求,的方程;(2)求證:直線和的斜率之積為定值;(3)求證:為定值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】求得兩圓的圓心和半徑,再根據(jù)圓心距與半徑之和半徑之差的關(guān)系,即可判斷位置關(guān)系.【詳解】對(duì)圓,其圓心,半徑;對(duì)圓,其圓心,半徑;又,故兩圓外切.故選:A.2、A【解析】模擬程序運(yùn)行可得程序框圖的功能是計(jì)算并輸出三個(gè)數(shù)中的最小數(shù),計(jì)算三個(gè)數(shù)判斷作答.【詳解】模擬程序運(yùn)行可得程序框圖的功能是計(jì)算并輸出三個(gè)數(shù)中的最小數(shù),因,,,則,不成立,則,不成立,則,所以應(yīng)輸出的x值為.故選:A3、C【解析】根據(jù)圓的方程得出兩圓的圓心和半徑,再得出圓心距離與兩圓的半徑的關(guān)系,可得選項(xiàng).【詳解】圓的圓心為,半徑,的圓心為,半徑,則,所以兩圓的位置是關(guān)系是相交,故選:C.【點(diǎn)睛】本題考查兩圓的位置關(guān)系,關(guān)鍵在于運(yùn)用判定兩圓的位置關(guān)系一般利用幾何法.即比較圓心之間的距離與半徑之和、之差的大小關(guān)系,屬于基礎(chǔ)題.4、D【解析】的焦點(diǎn)坐標(biāo)為,故選D.【考點(diǎn)】拋物線的性質(zhì)【名師點(diǎn)睛】本題考查拋物線的定義.解析幾何是中學(xué)數(shù)學(xué)的一個(gè)重要分支,圓錐曲線是解析幾何的重要內(nèi)容,它們的定義、標(biāo)準(zhǔn)方程、簡單幾何性質(zhì)是我們要重點(diǎn)掌握的內(nèi)容,一定要熟記掌握5、D【解析】本題是焦點(diǎn)在x軸的橢圓,求出c,即可求得焦點(diǎn)坐標(biāo).【詳解】,可得焦點(diǎn)坐標(biāo)為和.故選:D6、A【解析】根據(jù)橢圓的定義即可求解.【詳解】解:,故,又,根據(jù)橢圓的定義可知:P的軌跡為橢圓.故選:A.7、A【解析】將直線方程變形得,再根據(jù)方程即可得答案.【詳解】解:由得到:,∴直線恒過定點(diǎn)故選:A8、A【解析】由焦距為可得,又,進(jìn)而可得,最后根據(jù)焦點(diǎn)在軸上的雙曲線的漸近線方程為即可求解.【詳解】解:因?yàn)殡p曲線的焦距為,所以,所以,解得,所以,所以雙曲線的漸近線方程為,即,故選:A.9、B【解析】由平均數(shù)、極差及中位數(shù)的定義依次求解即可比較【詳解】,,故甲、乙的平均數(shù)相同,甲、乙的極差分別為,,故不同,甲、乙的中位數(shù)分別為,,故不同,故選:10、A【解析】恰好為拋物線的焦點(diǎn),等于到準(zhǔn)線的距離,要想最小,過圓心作拋物線的準(zhǔn)線的垂線交拋物線于點(diǎn),交圓于,最小值等于圓心到準(zhǔn)線的距離減去半徑4-1=.考點(diǎn):1.拋物線的定義;2.圓中的最值問題;11、B【解析】由條件可得,即可得到答案.【詳解】方程表示焦點(diǎn)在y軸上的雙曲線所以,即故選:B12、B【解析】根據(jù)題意,設(shè)每天派出的人數(shù)組成數(shù)列,可得數(shù)列是首項(xiàng),公差數(shù)7的等差數(shù)列,解方程可得所求值【詳解】解:設(shè)第天派出的人數(shù)為,則是以65為首項(xiàng)、7為公差的等差數(shù)列,且,,∴,,∴天則目前派出的人數(shù)為人,故選:B二、填空題:本題共4小題,每小題5分,共20分。13、58【解析】分別將甲、乙兩名運(yùn)動(dòng)員的得分按小到大或者大到小排序,分別確定中位數(shù),再相加即可【詳解】因?yàn)榧?、乙兩名籃球運(yùn)動(dòng)員各參賽11場,故中位數(shù)是第6個(gè)數(shù)甲的得分按小到大排序后為:12,22,23,32,33,34,35,40,43,44,46,所以,中位數(shù)為34乙的得分按小到大排序后為:12,13,21,22,23,24,31,31,34,40,49所以,中位數(shù)為24所以,中位數(shù)之和為34+24=58,故答案為:5814、【解析】計(jì)算出正方體的8個(gè)頂點(diǎn)中選取4個(gè)作為項(xiàng)點(diǎn)的取法和分從上底面取一個(gè)點(diǎn)下底面取三個(gè)點(diǎn)、從上底面取二個(gè)點(diǎn)下底面取二個(gè)點(diǎn)、從上底面取三個(gè)點(diǎn)下底面取一個(gè)點(diǎn)可得到四面體的取法,由古典概型概率計(jì)算公式可得答案.【詳解】正方體的8個(gè)頂點(diǎn)中選取4個(gè)作為項(xiàng)點(diǎn),共有取法,可得到四面體的情況有從上底面取一個(gè)點(diǎn)下底面取三個(gè)點(diǎn)有種;從上底面取二個(gè)點(diǎn)下底面取二個(gè)點(diǎn)有種,其中當(dāng)上底面和下底面取的四個(gè)點(diǎn)在同一平面時(shí)共有10種情況不符合,此種情況共有種;從上底面取三個(gè)點(diǎn)下底面取一個(gè)點(diǎn)有種;一個(gè)有種,所以可得到四面體的概率為.故答案為:.15、【解析】由題可求三角形三頂點(diǎn)的坐標(biāo),三角形的外接圓的方程即求.【詳解】令,得或,則,∴外接圓的圓心的橫坐標(biāo)為2,設(shè),半徑為r,由,得,則,即,得,.∴的外接圓的方程為.故答案為:.16、;【解析】可化簡曲線的方程為,作出其圖形,數(shù)形結(jié)合求臨界值即可求解.【詳解】由可得,所以曲線為以為圓心,的下半圓,作出圖形如圖:當(dāng)直線過點(diǎn)時(shí),,可得,當(dāng)直線與半圓相切時(shí),則圓心到直線的距離,可得:或(舍),若直線與曲線沒有公共點(diǎn),由圖知:或,所以實(shí)數(shù)的取值范圍是:,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)或.【解析】(1)AB兩點(diǎn)的中點(diǎn)為圓心,AB兩點(diǎn)距離的一半為半徑;(2)分斜率存在和不存在,根據(jù)垂徑定理即可求解.【小問1詳解】已知點(diǎn),,線段是圓M的直徑,則圓心坐標(biāo)為,∴半徑,∴圓的方程為;【小問2詳解】由(1)可知圓的圓心,半徑為.設(shè)為中點(diǎn),則,,則.當(dāng)?shù)男甭什淮嬖跁r(shí),的方程為,此時(shí),符合題意;當(dāng)?shù)男甭蚀嬖跁r(shí),設(shè)的方程為,即kx-y+2=0,則,解得,故直線的方程為,即.綜上,直線的方程為或.18、(Ⅰ)(Ⅱ)詳見解析【解析】(Ⅰ)利用排趨性的準(zhǔn)線方程求出p,即可求解拋物線的方程;(Ⅱ)直線y=k(x-2)(k≠0)與拋物線聯(lián)立,通過韋達(dá)定理求解直線的斜率關(guān)系即可證明OM⊥ON試題解析:(Ⅰ)解:因?yàn)閽佄锞€的準(zhǔn)線方程為,所以,解得,所以拋物線的方程為.(Ⅱ)證明:設(shè),.將代入,消去整理得.所以.由,,兩式相乘,得,注意到,異號(hào),所以.所以直線與直線的斜率之積為,即.考點(diǎn):直線與拋物線的位置關(guān)系;拋物線的標(biāo)準(zhǔn)方程19、(1),,(2)第三組應(yīng)抽人,第四組應(yīng)抽人,第五組應(yīng)抽人(3)【解析】(1)根據(jù)頻率分布表的數(shù)據(jù)求出b,c,d的值;(2)三個(gè)組共有60人,從而利用分層抽樣抽樣方法抽取6名學(xué)生第三組應(yīng)抽3人,第四組應(yīng)抽2人,第五組應(yīng)抽1人;(3)記第三組抽出的3人分別為,第四組抽出的2人分別為,第五組抽出的1人為,利用列舉法結(jié)合概率公式得出答案.【小問1詳解】由題意得,,【小問2詳解】三個(gè)組共有60人,所以第三組應(yīng)抽人,第四組應(yīng)抽人,第五組應(yīng)抽人.【小問3詳解】記第三組抽出的3人分別為,第四組抽出的2人分別為,第五組抽出的1人為,從這6人中隨機(jī)抽取2人,基本事件包含,共15個(gè)基本事件.其中2人來自同一組的情況有,共4種.所以,2人來自同一組的概率為.20、(1)證明見解析;(2).【解析】(1)連接交于,連接,證得,從而證得平面;(2)過作于,以為原點(diǎn),建立空間直角坐標(biāo)系,設(shè),求面的法向量,由直線與平面所成角的正弦值為,求得的值,再用向量法求出二面角的余弦值.【詳解】解:(1)連接交于,連接,由題意,∵,∴,∴,又面,面,∴面.(2)過作于,則在中,,,,以為原點(diǎn),建立如圖所示的空間直角坐標(biāo)系.設(shè),則,,,,,,,,設(shè)向量為平面的一個(gè)法向量,則由,有,令,得;記直線與平面所成的角為,則,解得,此時(shí);設(shè)向量為平面的一個(gè)法向量則由,有,令,得;∴二面角的余弦值為.【點(diǎn)睛】本題考查了線面平行的判定與證明,用向量法求線面角,二面角,還考查了學(xué)生的分析能力,空間想象能力,運(yùn)算能力,屬于中檔題.21、(1);(2).【解析】(1)由直棱柱的性質(zhì)及勾股定理求出△各邊長,應(yīng)用余弦定理求,進(jìn)而可得其正弦值,再求邊上的高即可.(2)以為原點(diǎn),,,所在直線為x軸、y軸、z軸,建立空間直角坐標(biāo)系,然后求出兩個(gè)平面的法向量,然后可算出答案.【小問1詳解】如圖,連接,由題設(shè),,,,由直棱柱性質(zhì)及,在中,在中,在中,在中,所以在△中,,則,所以到直線的距離.【小問2詳解】以為原點(diǎn),,,所在直線為x軸、y軸、z軸,建立如圖所示的空間直角坐標(biāo)系易知:,,,則,因?yàn)槠矫?,所以平面的一個(gè)法向量為設(shè)平面的法向量為,則,取,則,所以,即平面與平面的夾角的余弦值為22、(1):;:(2)證明
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 工程經(jīng)濟(jì)的智慧選擇試題及答案
- 水利水電工程重要?dú)v史事件回顧試題及答案
- 公共關(guān)系與組織之間的互動(dòng)與協(xié)作研究試題及答案
- 工程項(xiàng)目管理實(shí)務(wù)問題試題及答案
- 高頻考點(diǎn)試題及答案市政工程
- 2025年經(jīng)濟(jì)師考試備考經(jīng)驗(yàn)分享試題及答案
- 考前經(jīng)濟(jì)法復(fù)習(xí)試題及答案
- 公共預(yù)算管理的實(shí)務(wù)試題及答案
- 五險(xiǎn)一金/年薪12萬五九煤炭(集團(tuán))招聘50人筆試參考題庫附帶答案詳解
- 行政管理的績效管理試題及答案
- 主動(dòng)脈夾層病人的健康宣教
- 法律文化-形考作業(yè)2-國開(ZJ)-參考資料
- 《危險(xiǎn)化學(xué)品企業(yè)安全生產(chǎn)標(biāo)準(zhǔn)化規(guī)范》專業(yè)深度解讀與應(yīng)用培訓(xùn)指導(dǎo)材料之3:5管理要求-5.2 安全生產(chǎn)責(zé)任制(雷澤佳編制-2025A0)
- 2025年鄉(xiāng)村醫(yī)生基礎(chǔ)醫(yī)學(xué)知識(shí)歷年真題解析及試題
- 2024屆安徽省合肥市高三一模物理試題 無答案
- 2025年體育產(chǎn)業(yè)信息化管理計(jì)劃
- 煤礦數(shù)字化智慧礦山整體解決方案(技術(shù)方案)
- 抵押車位合同協(xié)議
- 高校教職工通訊員培訓(xùn)
- 理化外包合同協(xié)議
- 水務(wù)集團(tuán)筆試題目及答案
評(píng)論
0/150
提交評(píng)論