




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年湖南省岳陽市三校高二上數(shù)學(xué)期末檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著,第九章“勾股”,講述了“勾股定理”及一些應(yīng)用,直角三角形的兩直角邊與斜邊的長分別稱“勾”“股”“弦”,且“”.設(shè)分別是雙曲線的左、右焦點,直線交雙曲線左、右兩支于兩點,若恰好是的“勾”“股”,則此雙曲線的離心率為()A. B.C.2 D.2.為了解一片大約一萬株樹木的生長情況,隨機測量了其中100株樹木的底部周長(單位:㎝).根據(jù)所得數(shù)據(jù)畫出的樣本頻率分布直方圖如圖,那么在這片樹木中,底部周長小于110㎝的株樹大約是()A.3000 B.6000C.7000 D.80003.由小到大排列的一組數(shù)據(jù):,其中每個數(shù)據(jù)都小于,另一組數(shù)據(jù)2、的中位數(shù)可以表示為()A. B.C. D.4.已知函數(shù)在上是增函數(shù),則實數(shù)的取值范圍是()A. B.C. D.5.已知F(3,0)是橢圓的一個焦點,過F且垂直x軸的弦長為,則該橢圓的方程為()A.+=1 B.+=1C.+=1 D.+=16.已知函數(shù)及其導(dǎo)函數(shù),若存在使得,則稱是的一個“巧值點”.下列選項中沒有“巧值點”的函數(shù)是()A. B.C. D.7.在平面直角坐標(biāo)系xOy中,過x軸上的點P分別向圓和圓引切線,記切線長分別為.則的最小值為()A.2 B.3C.4 D.58.我國古代的數(shù)學(xué)名著《九章算術(shù)》中有“衰分問題”:今有女子善織,日自倍,五日織五尺,問次日織幾問?其意為:一女子每天織布的尺數(shù)是前一天的2倍,5天共織布5尺,請問第二天織布的尺數(shù)是()A. B.C. D.9.某商場為了解銷售活動中某商品銷售量與活動時間之間的關(guān)系,隨機統(tǒng)計了某次銷售活動中的商品銷售量與活動時間,并制作了下表:活動時間銷售量由表中數(shù)據(jù)可知,銷售量與活動時間之間具有線性相關(guān)關(guān)系,算得線性回歸方程為,據(jù)此模型預(yù)測當(dāng)時,的值為()A B.C. D.10.在中,B=60°,,,則AC邊的長等于()A. B.C. D.11.已知等差數(shù)列的公差為,前項和為,等比數(shù)列的公比為,前項和為.若,則()A. B.C. D.12.已知等比數(shù)列的各項均為正數(shù),公比,且滿足,則()A.8 B.4C.2 D.1二、填空題:本題共4小題,每小題5分,共20分。13.已知點為雙曲線,右支上一點,,為雙曲線的左、右焦點,點為線段上一點,的角平分線與線段交于點,且滿足,則________;若為線段的中點且,則雙曲線的離心率為________14.雙曲線的右頂點為A,右焦點為F,過點F平行于雙曲線的一條漸近線的直線與雙曲線交于點B,則的面積為__________15.雙曲線的離心率______.16.已知為拋物線上任意一點,為拋物線的焦點,為平面內(nèi)一定點,則的最小值為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,側(cè)面底面,是以為斜邊的等腰直角三角形,,,,點E為的中點.(1)證明:平面;(2)求二面角的余弦值.18.(12分)如圖,在三棱錐中,,,為的中點(1)證明:平面;(2)若點在棱上,且二面角為,求與平面所成角正弦值.19.(12分)如圖,三棱錐中,,,,,,點是PA的中點,點D是AC的中點,點N在PB上,且.(1)證明:平面CMN;(2)求平面MNC與平面ABC所成角的余弦值.20.(12分)已知點及圓,點P是圓B上任意一點,線段的垂直平分線l交半徑于點T,當(dāng)點P在圓上運動時,記點T的軌跡為曲線E(1)求曲線E的方程;(2)設(shè)存在斜率不為零且平行的兩條直線,,它們與曲線E分別交于點C、D、M、N,且四邊形是菱形,求該菱形周長的最大值21.(12分)已知拋物線,直線交于、兩點,且當(dāng)時,.(1)求的值;(2)如圖,拋物線在、兩點處的切線分別與軸交于、,和交于,.證明:存在實數(shù),使得.22.(10分)設(shè)等差數(shù)列的各項均為整數(shù),且滿足對任意正整數(shù),總存在正整數(shù),使得,則稱這樣的數(shù)列具有性質(zhì)(1)若數(shù)列的通項公式為,數(shù)列是否具有性質(zhì)?并說明理由;(2)若,求出具有性質(zhì)的數(shù)列公差的所有可能值;(3)對于給定的,具有性質(zhì)的數(shù)列是有限個,還是可以無窮多個?(直接寫出結(jié)論)
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù)雙曲線的定義及直角三角形斜邊的中線定理,再結(jié)合雙曲線的離心率公式即可求解.【詳解】如圖所示由題意可知,根據(jù)雙曲線的定義知,是的中點且.在中,是的中點,所以,因為直線的斜率為,所以,所以.所以是等邊三角形,.在中,.由雙曲線的定義,得,所以雙曲線的離心率為.故選:A.2、C【解析】先由頻率分布直方圖得到抽取的樣本中底部周長小于110㎝的概率,進而可求出結(jié)果.【詳解】由頻率分布直方圖可得,樣本中底部周長小于110㎝的概率為,因此在這片樹木中,底部周長小于110㎝的株樹大約是.故選:C.【點睛】本題主要考查頻率分布直方圖的應(yīng)用,屬于基礎(chǔ)題型.3、C【解析】先根據(jù)題意對數(shù)據(jù)進行排列,然后由中位數(shù)的定義求解即可【詳解】因為由小到大排列的一組數(shù)據(jù):,其中每個數(shù)據(jù)都小于,所以另一組數(shù)據(jù)2、從小到大的排列為,所以這一組數(shù)的中位數(shù)為,故選:C4、A【解析】由題意可知,對任意的恒成立,可得出對任意的恒成立,利用基本不等式可求得實數(shù)的取值范圍.【詳解】因為,則,由題意可知,對任意的恒成立,所以,對任意的恒成立,由基本不等式可得,當(dāng)且僅當(dāng)時,等號成立,所以,.故選:A.5、C【解析】根據(jù)已知條件求得,由此求得橢圓的方程.【詳解】依題意,所以橢圓方程為.故選:C6、C【解析】利用新定義:存在使得,則稱是的一個“巧點”,對四個選項中的函數(shù)進行一一的判斷即可【詳解】對于A,,則,令,解得或,即有解,故選項A的函數(shù)有“巧值點”,不符合題意;對于B,,則,令,令,則g(x)在x>0時為增函數(shù),∵(1),(e),由零點的存在性定理可得,在上存在唯一零點,即方程有解,故選項B的函數(shù)有“巧值點”,不符合題意;對于C,,則,令,故方程無解,故選項C的函數(shù)沒有“巧值點”,符合題意;對于D,,則,令,則.∴方程有解,故選項D的函數(shù)有“巧值點”,不符合題意故選:C7、D【解析】利用兩點間的距離公式,將切線長的和轉(zhuǎn)化為到兩圓心的距離和,利用三點共線距離最小即可求解.詳解】,圓心,半徑,圓心,半徑設(shè)點P,則,即到與兩點距離之和的最小值,當(dāng)、、三點共線時,的和最小,即的和最小值為.故選:D【點睛】本題考查了兩點間的距離公式,需熟記公式,屬于基礎(chǔ)題.8、C【解析】根據(jù)等比數(shù)列求和公式求出首項即可得解.【詳解】由題可得該女子每天織布的尺數(shù)成等比數(shù)列,設(shè)其首項為,公比為,則,解得所以第二天織布的尺數(shù)為.故選:C9、C【解析】求出樣本中心點的坐標(biāo),代入回歸直線方程,求出的值,再將代入回歸方程即可得解.【詳解】由表格中的數(shù)據(jù)可得,,將樣本中心點的坐標(biāo)代入回歸直線方程可得,解得,所以,回歸直線方程為,故當(dāng)時,.故選:C.10、B【解析】根據(jù)正弦定理直接計算可得答案.【詳解】由正弦定理,,得,故選:B.11、D【解析】用基本量表示可得基本量的關(guān)系式,從而可得,故可得正確的選項.【詳解】若,則,而,此時,這與題設(shè)不合,故,故,故,而,故,此時不確定,故選:D.12、A【解析】根據(jù)是等比數(shù)列,則通項為,然后根據(jù)條件可解出,進而求得【詳解】由為等比數(shù)列,不妨設(shè)首項為由,可得:又,則有:則故選:A二、填空題:本題共4小題,每小題5分,共20分。13、①.②.【解析】過作,交于點,作,交于點,由向量共線定理可得;再由角平分線性質(zhì)定理和雙曲線的定義、結(jié)合余弦定理和離心率公式,可得所求值【詳解】解:過作交于點,作交于點,由,得,由角平分線定理;因為為的中點,所以,由雙曲線的定義,,所以,,,在中,由余弦定理,所以.故答案為:;.【點睛】本題考查雙曲線的定義、方程和性質(zhì),以及角平分線的性質(zhì)定理和余弦定理的運用,考查方程思想和運算能力,屬于中檔題14、【解析】由平行線的性質(zhì)求出斜率,由點斜式求出直線方程,然后求出交點坐標(biāo),由三角形面積公式可得結(jié)果.【詳解】雙曲線的右頂點,右焦點,,所以漸近線方程為,不妨設(shè)直線FB的方程為,將代入雙曲線方程整理,得,解得,,所以,所以故答案為:.15、【解析】根據(jù)雙曲線方程直接可得離心率.【詳解】由,可得,,故,離心率,故答案為:.16、3【解析】利用拋物線的定義,再結(jié)合圖形即求.【詳解】由題可得拋物線的準(zhǔn)線為,設(shè)點在準(zhǔn)線上的射影為,則根據(jù)拋物線的定義可知,∴要求取得最小值,即求取得最小,當(dāng)三點共線時最小,為.故答案為:3.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解析】(1)用線線平行證明線面平行,∴在平面PCD內(nèi)作BE的平行線即可;(2)求二面角的大小,可以用空間向量進行求解,根據(jù)已知條件,以AD中點O為原點,OB,AD,OP分別為x、y、z軸建立坐標(biāo)系﹒【小問1詳解】如圖,取PD中點F,連接EF,F(xiàn)C﹒∵E是AP中點,∴EFAD,由題知BCAD,∴BCEF,∴BCFE是平行四邊形,∴BE∥CF,又CF平面PCD,BE平面PCD,∴BE∥平面PCD;【小問2詳解】取AD中點O,連接OP,OB,∵是以為斜邊等腰直角三角形,∴OP⊥AD,又平面平面,平面PAD∩平面=AD,∴OP⊥平面ABCD,∵OB平面ABCD,∴OP⊥OB,由BC∥AD,CD⊥AD,AD=2BC知OB⊥OD,∴OP、OB、OD兩兩垂直,故以O(shè)原點,OB、OD、OP分別為x、y、z軸,建立空間直角坐標(biāo)系Oxyz,如圖:設(shè)|BC|=1,則B(1,0,0),D(0,1,0),E(0,),P(0,0,1),則,設(shè)平面BED的法向量為,平面PBD的法向量為則,取,,取設(shè)二面角的大小為θ,則cosθ=﹒18、(1)證明見解析;(2).【解析】(1)根據(jù)等腰三角形性質(zhì)得PO垂直AC,再通過計算,根據(jù)勾股定理得PO垂直O(jiān)B,最后根據(jù)線面垂直判定定理得結(jié)論;(2)根據(jù)條件建立空間直角坐標(biāo)系,設(shè)立各點坐標(biāo),根據(jù)方程組解出平面PAM一個法向量,利用向量數(shù)量積求出兩個法向量夾角,根據(jù)二面角與法向量夾角相等或互補關(guān)系列方程,解得M坐標(biāo),再利用向量數(shù)量積求得向量PC與平面PAM法向量夾角,最后根據(jù)線面角與向量夾角互余得結(jié)果【詳解】(1)因為,為的中點,所以,且連結(jié)因為,所以為等腰直角三角形,且由知由知平面(2)如圖,以為坐標(biāo)原點,的方向為軸正方向,建立空間直角坐標(biāo)系由已知得取平面的法向量設(shè),則設(shè)平面的法向量為由得,可取所以.由已知得所以.解得(舍去),所以又,所以所以與平面所成角的正弦值為【點睛】利用法向量求解空間線面角的關(guān)鍵在于“四破”:第一,破“建系關(guān)”,構(gòu)建恰當(dāng)?shù)目臻g直角坐標(biāo)系;第二,破“求坐標(biāo)關(guān)”,準(zhǔn)確求解相關(guān)點的坐標(biāo);第三,破“求法向量關(guān)”,求出平面的法向量;第四,破“應(yīng)用公式關(guān)”19、(1)證明見解析(2)【解析】建立如圖所示空間直角坐標(biāo)系,得到相關(guān)點和相關(guān)向量的坐標(biāo),(1)求出平面的法向量,利用證明即可;(2)由(1)知平面的法向量,再求平面的法向量,利用向量的夾角公式即可求解.【小問1詳解】證明:三棱錐中,,,∴分別以,,,,軸建立如圖所示空間直角坐標(biāo)系∵,,點M是PA的中點,點D是AC的中點,點N在PB上且∴,,,,,設(shè)平面的法向量,,,,由得令得∴∵∴又平面∴平面;【小問2詳解】,,∴平面∴為平面的法向量則與的夾角的補角是平面與平面所成二面角的平面角.∴平面與平面所成角的余弦值為.20、(1)(2)【解析】(1)根據(jù)橢圓的定義和性質(zhì),建立方程求出,即可(2)設(shè)的方程為,,,,,設(shè)的方程為,,,,,分別聯(lián)立直線方程和橢圓方程,運用韋達定理和判別式大于0,以及弦長公式,求得,,運用菱形和橢圓的對稱性可得,關(guān)于原點對稱,結(jié)合菱形的對角線垂直和向量數(shù)量積為0,可得,設(shè)菱形的周長為,運用基本不等式,計算可得所求最大值【小問1詳解】點在線段的垂直平分線上,,又,曲線是以坐標(biāo)原點為中心,和為焦點,長軸長為的橢圓設(shè)曲線的方程為,,,曲線的方程為【小問2詳解】設(shè)的方程為,,,,,設(shè)的方程為,,,,,聯(lián)立可得,由可得,化簡可得,①,,,同理可得,因為四邊形為菱形,所以,所以,又因為,所以,所以,關(guān)于原點對稱,又橢圓關(guān)于原點對稱,所以,關(guān)于原點對稱,,也關(guān)于原點對稱,所以且,所以,,,,因為四邊形為菱形,可得,即,即,即,可得,化簡可得,設(shè)菱形的周長為,則,當(dāng)且僅當(dāng),即時等號成立,此時,滿足①,所以菱形的周長的最大值為【點睛】關(guān)鍵點點睛:在處理此類直線與橢圓相交問題中,一般先設(shè)出直線方程,聯(lián)立方程,利用韋達定理得出,,再具體問題具體分析,一般涉及弦長計算問題,運算比較繁瑣,需要較強的運算能力,屬于難題。21、(1);(2)證明見解析.【解析】(1)將代入拋物線的方程,列出韋達定理,利用弦長公式可得出關(guān)于的等式,即可解得正數(shù)的值;(2)將代入,列出韋達定理,求出兩切線方程,進而可求得點的坐標(biāo),分、兩種情況討論,在時,推導(dǎo)出、、重合,可得出;在時,求出的中點的坐標(biāo),利用斜率關(guān)系可得出,結(jié)合平面向量的線性運算可證得結(jié)論成立.【小問1詳解】解:將代入得,設(shè)、,則,由韋達定理可得,則,解得或(舍),故.【小問2詳解】解:將代入中得,設(shè)、,則,由韋達定理可得,對求導(dǎo)得,則拋物線在點處的切線方程為,即,①同理拋物線在點處的切線方程為,②聯(lián)立①②
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 深海探險起點:船舶租賃合同揭秘
- 飛行員培訓(xùn)合同合作意向范本
- 車險代理合同書樣本
- 企業(yè)員工培訓(xùn)合作協(xié)議合同
- 股權(quán)激勵實施合同協(xié)議
- 施工領(lǐng)域農(nóng)民工勞動合同模板
- 汽車購銷合同其一:條款解析
- 小學(xué)生心理課件
- 無線廣播電視傳輸中的信號傳輸信道分配考核試卷
- 天然氣儲層滲透性改善技術(shù)考核試卷
- 2024年甘肅天水麥積山石窟藝術(shù)研究所招聘工作人員考試真題
- 2025年山東省榮成市屬事業(yè)單位招聘崗位及歷年高頻重點模擬試卷提升(共500題附帶答案詳解)
- 火星表面材料分析-深度研究
- 《職業(yè)技能等級評價規(guī)范編制指南編制說明》
- 《教育強國建設(shè)規(guī)劃綱要(2024-2035年)》解讀講座
- 畜禽養(yǎng)殖場惡臭污染物排放及其處理技術(shù)研究進展
- 超聲內(nèi)鏡引導(dǎo)下穿刺活檢術(shù)的配合及護理
- 新生兒常見的產(chǎn)傷及護理
- 代寫回憶錄合同
- 2024年10月自考00149國際貿(mào)易理論與實務(wù)試題及答案
- 天耀中華合唱簡譜大劇院版
評論
0/150
提交評論