2022-2023學年鄭州市高三下學期二輪質量檢測試題數(shù)學試題_第1頁
2022-2023學年鄭州市高三下學期二輪質量檢測試題數(shù)學試題_第2頁
2022-2023學年鄭州市高三下學期二輪質量檢測試題數(shù)學試題_第3頁
2022-2023學年鄭州市高三下學期二輪質量檢測試題數(shù)學試題_第4頁
2022-2023學年鄭州市高三下學期二輪質量檢測試題數(shù)學試題_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年鄭州市高三下學期二輪質量檢測試題數(shù)學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若函數(shù),在區(qū)間上任取三個實數(shù),,均存在以,,為邊長的三角形,則實數(shù)的取值范圍是()A. B. C. D.2.已知拋物線經過點,焦點為,則直線的斜率為()A. B. C. D.3.《算數(shù)書》竹簡于上世紀八十年代在湖北省江陵縣張家山出土,這是我國現(xiàn)存最早的有系統(tǒng)的數(shù)學典籍.其中記載有求“囷蓋”的術:“置如其周,令相承也.又以高乘之,三十六成一”.該術相當于給出了由圓錐的底面周長與高,計算其體積的近似公式.它實際上是將圓錐體積公式中的圓周率近似取為3.那么近似公式相當于將圓錐體積公式中的圓周率近似取為()A. B. C. D.4.網格紙上小正方形邊長為1單位長度,粗線畫出的是某幾何體的三視圖,則此幾何體的體積為()A.1 B. C.3 D.45.若直線與曲線相切,則()A.3 B. C.2 D.6.已知為一條直線,為兩個不同的平面,則下列說法正確的是()A.若,則 B.若,則C.若,則 D.若,則7.若,則()A. B. C. D.8.設為虛數(shù)單位,則復數(shù)在復平面內對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.執(zhí)行如圖所示的程序框圖,若輸入的,則輸出的()A.9 B.31 C.15 D.6310.已知集合,若,則實數(shù)的取值范圍為()A. B. C. D.11.執(zhí)行下面的程序框圖,如果輸入,,則計算機輸出的數(shù)是()A. B. C. D.12.已知拋物線的焦點為,準線與軸的交點為,點為拋物線上任意一點的平分線與軸交于,則的最大值為A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,,若向量與向量平行,則實數(shù)___________.14.展開式中的系數(shù)的和大于8而小于32,則______.15.如圖,己知半圓的直徑,點是弦(包含端點,)上的動點,點在弧上.若是等邊三角形,且滿足,則的最小值為___________.16.在編號為1,2,3,4,5且大小和形狀均相同的五張卡片中,一次隨機抽取其中的三張,則抽取的三張卡片編號之和是偶數(shù)的概率為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設前項積為的數(shù)列,(為常數(shù)),且是等差數(shù)列.(I)求的值及數(shù)列的通項公式;(Ⅱ)設是數(shù)列的前項和,且,求的最小值.18.(12分)已知曲線的參數(shù)方程為(為參數(shù)),曲線的參數(shù)方程為(為參數(shù)).(1)求和的普通方程;(2)過坐標原點作直線交曲線于點(異于),交曲線于點,求的最小值.19.(12分)某商場為改進服務質量,在進場購物的顧客中隨機抽取了人進行問卷調查.調查后,就顧客“購物體驗”的滿意度統(tǒng)計如下:滿意不滿意男女是否有的把握認為顧客購物體驗的滿意度與性別有關?若在購物體驗滿意的問卷顧客中按照性別分層抽取了人發(fā)放價值元的購物券.若在獲得了元購物券的人中隨機抽取人贈其紀念品,求獲得紀念品的人中僅有人是女顧客的概率.附表及公式:.20.(12分)在平面直角坐標系中,曲線C的參數(shù)方程為(為參數(shù)).以原點為極點,x軸的非負半軸為極軸,建立極坐標系.(1)求曲線C的極坐標方程;(2)直線(t為參數(shù))與曲線C交于A,B兩點,求最大時,直線l的直角坐標方程.21.(12分)在中,,是邊上一點,且,.(1)求的長;(2)若的面積為14,求的長.22.(10分)在三棱錐中,是邊長為的正三角形,平面平面,,M、N分別為、的中點.?(1)證明:;(2)求三棱錐的體積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

利用導數(shù)求得在區(qū)間上的最大值和最小,根據三角形兩邊的和大于第三邊列不等式,由此求得的取值范圍.【詳解】的定義域為,,所以在上遞減,在上遞增,在處取得極小值也即是最小值,,,,,所以在區(qū)間上的最大值為.要使在區(qū)間上任取三個實數(shù),,均存在以,,為邊長的三角形,則需恒成立,且,也即,也即當、時,成立,即,且,解得.所以的取值范圍是.故選:D【點睛】本小題主要考查利用導數(shù)研究函數(shù)的最值,考查恒成立問題的求解,屬于中檔題.2、A【解析】

先求出,再求焦點坐標,最后求的斜率【詳解】解:拋物線經過點,,,,故選:A【點睛】考查拋物線的基礎知識及斜率的運算公式,基礎題.3、C【解析】

將圓錐的體積用兩種方式表達,即,解出即可.【詳解】設圓錐底面圓的半徑為r,則,又,故,所以,.故選:C.【點睛】本題利用古代數(shù)學問題考查圓錐體積計算的實際應用,考查學生的運算求解能力、創(chuàng)新能力.4、A【解析】

采用數(shù)形結合,根據三視圖可知該幾何體為三棱錐,然后根據錐體體積公式,可得結果.【詳解】根據三視圖可知:該幾何體為三棱錐如圖該幾何體為三棱錐,長度如上圖所以所以所以故選:A【點睛】本題考查根據三視圖求直觀圖的體積,熟悉常見圖形的三視圖:比如圓柱,圓錐,球,三棱錐等;對本題可以利用長方體,根據三視圖刪掉沒有的點與線,屬中檔題.5、A【解析】

設切點為,對求導,得到,從而得到切線的斜率,結合直線方程的點斜式化簡得切線方程,聯(lián)立方程組,求得結果.【詳解】設切點為,∵,∴由①得,代入②得,則,,故選A.【點睛】該題考查的是有關直線與曲線相切求參數(shù)的問題,涉及到的知識點有導數(shù)的幾何意義,直線方程的點斜式,屬于簡單題目.6、D【解析】A.若,則或,故A錯誤;B.若,則或故B錯誤;C.若,則或,或與相交;D.若,則,正確.故選D.7、D【解析】

直接利用二倍角余弦公式與弦化切即可得到結果.【詳解】∵,∴,故選D【點睛】本題考查的知識要點:三角函數(shù)關系式的恒等變變換,同角三角函數(shù)關系式的應用,主要考查學生的運算能力和轉化能力,屬于基礎題型.8、A【解析】

利用復數(shù)的除法運算化簡,求得對應的坐標,由此判斷對應點所在象限.【詳解】,對應的點的坐標為,位于第一象限.故選:A.【點睛】本小題主要考查復數(shù)除法運算,考查復數(shù)對應點所在象限,屬于基礎題.9、B【解析】

根據程序框圖中的循環(huán)結構的運算,直至滿足條件退出循環(huán)體,即可得出結果.【詳解】執(zhí)行程序框;;;;;,滿足,退出循環(huán),因此輸出,故選:B.【點睛】本題考查循環(huán)結構輸出結果,模擬程序運行是解題的關鍵,屬于基礎題.10、A【解析】

解一元二次不等式化簡集合的表示,求解函數(shù)的定義域化簡集合的表示,根據可以得到集合、之間的關系,結合數(shù)軸進行求解即可.【詳解】,.因為,所以有,因此有.故選:A【點睛】本題考查了已知集合運算的結果求參數(shù)取值范圍問題,考查了解一元二次不等式,考查了函數(shù)的定義域,考查了數(shù)學運算能力.11、B【解析】

先明確該程序框圖的功能是計算兩個數(shù)的最大公約數(shù),再利用輾轉相除法計算即可.【詳解】本程序框圖的功能是計算,中的最大公約數(shù),所以,,,故當輸入,,則計算機輸出的數(shù)是57.故選:B.【點睛】本題考查程序框圖的功能,做此類題一定要注意明確程序框圖的功能是什么,本題是一道基礎題.12、A【解析】

求出拋物線的焦點坐標,利用拋物線的定義,轉化求出比值,,求出等式左邊式子的范圍,將等式右邊代入,從而求解.【詳解】解:由題意可得,焦點F(1,0),準線方程為x=?1,

過點P作PM垂直于準線,M為垂足,

由拋物線的定義可得|PF|=|PM|=x+1,

記∠KPF的平分線與軸交于

根據角平分線定理可得,,當時,,當時,,,綜上:.故選:A.【點睛】本題主要考查拋物線的定義、性質的簡單應用,直線的斜率公式、利用數(shù)形結合進行轉化是解決本題的關鍵.考查學生的計算能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由題可得,因為向量與向量平行,所以,解得.14、4【解析】

由題意可得項的系數(shù)與二項式系數(shù)是相等的,利用題意,得出不等式組,求得結果.【詳解】觀察式子可知,,故答案為:4.【點睛】該題考查的是有關二項式定理的問題,涉及到的知識點有展開式中項的系數(shù)和,屬于基礎題目.15、1【解析】

建系,設,表示出點坐標,則,根據的范圍得出答案.【詳解】解:以為原點建立平面坐標系如圖所示:則,,,,設,則,,,,,,,顯然當取得最大值4時,取得最小值1.故答案為:1.【點睛】本題考查了平面向量的數(shù)量積運算,坐標運算,屬于中檔題.16、【解析】

先求出所有的基本事件個數(shù),再求出“抽取的三張卡片編號之和是偶數(shù)”這一事件包含的基本事件個數(shù),利用古典概型的概率計算公式即可算出結果.【詳解】一次隨機抽取其中的三張,所有基本事件為:1,2,3;1,2,4;1,2,5;1,3,4;1,3,5;1,4,5;2,3,4;2,3,5;2,4,5;3,4,5;共有10個,其中“抽取的三張卡片編號之和是偶數(shù)”包含6個基本事件,因此“抽取的三張卡片編號之和是偶數(shù)”的概率為:.故答案為:.【點睛】本題考查了古典概型及其概率計算公式,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ),;(Ⅱ)【解析】

(Ⅰ)當時,由,得到,兩邊同除以,得到.再根據是等差數(shù)列.求解.(Ⅱ),根據前n項和的定義得到,令,研究其增減性即可.【詳解】(Ⅰ)當時,,所以,即,所以.因為是等差數(shù)列.,所以,,令,,,所以,即;(Ⅱ),所以,,令,所以,,即,所以數(shù)列是遞增數(shù)列,所以,即.【點睛】本題主要考查等差數(shù)列的定義,前n項和以及數(shù)列的增減性,還考查了轉化化歸的思想和運算求解的能力,屬于中檔題.18、(1)曲線的普通方程為:;曲線的普通方程為:(2)【解析】

(1)消去曲線參數(shù)方程中的參數(shù),求得和的普通方程.(2)設出過原點的直線的極坐標方程,代入曲線的極坐標方程,求得的表達式,結合三角函數(shù)值域的求法,求得的最小值.【詳解】(1)曲線的普通方程為:;曲線的普通方程為:.(2)設過原點的直線的極坐標方程為;由得,所以曲線的極坐標方程為在曲線中,.由得曲線的極坐標方程為,所以而到直線與曲線的交點的距離為,因此,即的最小值為.【點睛】本小題主要考查參數(shù)方程化為普通方程,考查直角坐標方程化為極坐標方程,考查極坐標系下距離的有關計算,屬于中檔題.19、有的把握認為顧客購物體驗的滿意度與性別有關;.【解析】

由題得,根據數(shù)據判斷出顧客購物體驗的滿意度與性別有關;獲得了元購物券的人中男顧客有人,記為,;女顧客有人,記為,,,.從中隨機抽取人,所有基本事件有個,其中僅有1人是女顧客的基本事件有個,進而求出獲得紀念品的人中僅有人是女顧客的概率.【詳解】解析:由題得所以,有的把握認為顧客購物體驗的滿意度與性別有關.獲得了元購物券的人中男顧客有人,記為,;女顧客有人,記為,,,.從中隨機抽取人,所有基本事件有:,,,,,,,,,,,,,,,共個.其中僅有1人是女顧客的基本事件有:,,,,,,,,共個.所以獲得紀念品的人中僅有人是女顧客的概率.【點睛】本小題主要考查統(tǒng)計案例、卡方分布、概率等基本知識,考查概率統(tǒng)計基本思想以及抽象概括等能力和應用意識,屬于中檔題.20、(1);(2).【解析】

(1)利用消去參數(shù),得到曲線的普通方程,再將,代入普通方程,即可求出結論;(2)由(1)得曲線表示圓,直線曲線C交于A,B兩點,最大值為圓的直徑,直線過圓心,即可求出直線的方程.【詳解】(1)由曲線C的參數(shù)方程(為參數(shù)),可得曲線C的普通方程為,因為,所以曲線C的極坐標方程為,即.(2)因為直線(t為參數(shù))表示的是過點的直線,曲線C的普通方程為,所以當最大時,直線l經過圓心.直線l的斜率為,方程為,所以直線l的直角坐標方程為.【點睛】本題考查參數(shù)方程與普通方程互化、直角坐標方程與極坐標方程互化、直線與曲線的位置關系,考查化歸和轉化思想,屬于中檔題.21、(1)1;(2)5.【解析】

(1)由同角三角函數(shù)關系求得,再由兩角差的正弦公式求得,最后由正弦定理構建方程,求得答案.(2)在中,由正弦定理構建方程求得AB,再由任意三角形的面積公式構建方程求得BC,最后由余弦定理構建方程求得AC.【詳解】(1)據題意,,且,所以.所以.在中,據正弦定理可知,,所以.(2)在中,據正弦定理可知,所以.因為的面積為14,所以,即,得.在中,據余弦定理可知,,所以.【點睛】本題考查由正弦定

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論