版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
湖南省安鄉(xiāng)縣一中2023屆高三3月月考調(diào)研考試數(shù)學(xué)試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.為了得到函數(shù)的圖象,只需把函數(shù)的圖象上所有的點(diǎn)()A.向左平移個(gè)單位長(zhǎng)度 B.向右平移個(gè)單位長(zhǎng)度C.向左平移個(gè)單位長(zhǎng)度 D.向右平移個(gè)單位長(zhǎng)度2.已知集合則()A. B. C. D.3.已知,,,則()A. B. C. D.4.在空間直角坐標(biāo)系中,四面體各頂點(diǎn)坐標(biāo)分別為:.假設(shè)螞蟻窩在點(diǎn),一只螞蟻從點(diǎn)出發(fā),需要在,上分別任意選擇一點(diǎn)留下信息,然后再返回點(diǎn).那么完成這個(gè)工作所需要走的最短路徑長(zhǎng)度是()A. B. C. D.5.已知拋物線:的焦點(diǎn)為,準(zhǔn)線為,是上一點(diǎn),直線與拋物線交于,兩點(diǎn),若,則為()A. B.40 C.16 D.6.已知函數(shù),則方程的實(shí)數(shù)根的個(gè)數(shù)是()A. B. C. D.7.已知,則()A. B. C. D.28.在中,角,,的對(duì)邊分別為,,,若,,,則()A. B.3 C. D.49.已知函數(shù),,,,則,,的大小關(guān)系為()A. B. C. D.10.在中,,則=()A. B.C. D.11.已知拋物線的焦點(diǎn)為,準(zhǔn)線為,是上一點(diǎn),是直線與拋物線的一個(gè)交點(diǎn),若,則()A. B.3 C. D.212.若雙曲線的一條漸近線與圓至多有一個(gè)交點(diǎn),則雙曲線的離心率的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在矩形中,,為的中點(diǎn),將和分別沿,翻折,使點(diǎn)與重合于點(diǎn).若,則三棱錐的外接球的表面積為_____.14.展開式中,含項(xiàng)的系數(shù)為______.15.已知平面向量,,滿足||=1,||=2,,的夾角等于,且()?()=0,則||的取值范圍是_____.16.某陶瓷廠準(zhǔn)備燒制甲、乙、丙三件不同的工藝品,制作過程必須先后經(jīng)過兩次燒制,當(dāng)?shù)谝淮螣坪细窈蠓娇蛇M(jìn)入第二次燒制,再次燒制過程相互獨(dú)立.根據(jù)該廠現(xiàn)有的技術(shù)水平,經(jīng)過第一次燒制后,甲、乙、丙三件產(chǎn)品合格的概率依次為0.5、0.6、0.4,經(jīng)過第二次燒制后,甲、乙、丙三件產(chǎn)品合格的概率依次為0.6、0.5、0.75;則第一次燒制后恰有一件產(chǎn)品合格的概率為________;經(jīng)過前后兩次燒制后,合格工藝品的件數(shù)為,則隨機(jī)變量的期望為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(1)若,試討論的單調(diào)性;(2)若,實(shí)數(shù)為方程的兩不等實(shí)根,求證:.18.(12分)已知中,角所對(duì)邊的長(zhǎng)分別為,且(1)求角的大?。唬?)求的值.19.(12分)的內(nèi)角的對(duì)邊分別為,且.(1)求;(2)若,點(diǎn)為邊的中點(diǎn),且,求的面積.20.(12分)在四棱椎中,四邊形為菱形,,,,,,分別為,中點(diǎn)..(1)求證:;(2)求平面與平面所成銳二面角的余弦值.21.(12分)已知在中,角,,的對(duì)邊分別為,,,的面積為.(1)求證:;(2)若,求的值.22.(10分)已知函數(shù)(1)若函數(shù)在處取得極值1,證明:(2)若恒成立,求實(shí)數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
通過變形,通過“左加右減”即可得到答案.【詳解】根據(jù)題意,故只需把函數(shù)的圖象上所有的點(diǎn)向右平移個(gè)單位長(zhǎng)度可得到函數(shù)的圖象,故答案為D.【點(diǎn)睛】本題主要考查三角函數(shù)的平移變換,難度不大.2、B【解析】
解對(duì)數(shù)不等式可得集合A,由交集運(yùn)算即可求解.【詳解】集合解得由集合交集運(yùn)算可得,故選:B.【點(diǎn)睛】本題考查了集合交集的簡(jiǎn)單運(yùn)算,對(duì)數(shù)不等式解法,屬于基礎(chǔ)題.3、B【解析】
利用指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的單調(diào)性,將數(shù)據(jù)和做對(duì)比,即可判斷.【詳解】由于,,故.故選:B.【點(diǎn)睛】本題考查利用指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的單調(diào)性比較大小,屬基礎(chǔ)題.4、C【解析】
將四面體沿著劈開,展開后最短路徑就是的邊,在中,利用余弦定理即可求解.【詳解】將四面體沿著劈開,展開后如下圖所示:最短路徑就是的邊.易求得,由,知,由余弦定理知其中,∴故選:C【點(diǎn)睛】本題考查了余弦定理解三角形,需熟記定理的內(nèi)容,考查了學(xué)生的空間想象能力,屬于中檔題.5、D【解析】
如圖所示,過分別作于,于,利用和,聯(lián)立方程組計(jì)算得到答案.【詳解】如圖所示:過分別作于,于.,則,根據(jù)得到:,即,根據(jù)得到:,即,解得,,故.故選:.【點(diǎn)睛】本題考查了拋物線中弦長(zhǎng)問題,意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.6、D【解析】
畫出函數(shù),將方程看作交點(diǎn)個(gè)數(shù),運(yùn)用圖象判斷根的個(gè)數(shù).【詳解】畫出函數(shù)令有兩解,則分別有3個(gè),2個(gè)解,故方程的實(shí)數(shù)根的個(gè)數(shù)是3+2=5個(gè)故選:D【點(diǎn)睛】本題綜合考查了函數(shù)的圖象的運(yùn)用,分類思想的運(yùn)用,數(shù)學(xué)結(jié)合的思想判斷方程的根,難度較大,屬于中檔題.7、B【解析】
結(jié)合求得的值,由此化簡(jiǎn)所求表達(dá)式,求得表達(dá)式的值.【詳解】由,以及,解得..故選:B【點(diǎn)睛】本小題主要考查利用同角三角函數(shù)的基本關(guān)系式化簡(jiǎn)求值,考查二倍角公式,屬于中檔題.8、B【解析】由正弦定理及條件可得,即.,∴,由余弦定理得?!?選B。9、B【解析】
可判斷函數(shù)在上單調(diào)遞增,且,所以.【詳解】在上單調(diào)遞增,且,所以.故選:B【點(diǎn)睛】本題主要考查了函數(shù)單調(diào)性的判定,指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的性質(zhì),利用單調(diào)性比大小等知識(shí),考查了學(xué)生的運(yùn)算求解能力.10、B【解析】
在上分別取點(diǎn),使得,可知為平行四邊形,從而可得到,即可得到答案.【詳解】如下圖,,在上分別取點(diǎn),使得,則為平行四邊形,故,故答案為B.【點(diǎn)睛】本題考查了平面向量的線性運(yùn)算,考查了學(xué)生邏輯推理能力,屬于基礎(chǔ)題.11、D【解析】
根據(jù)拋物線的定義求得,由此求得的長(zhǎng).【詳解】過作,垂足為,設(shè)與軸的交點(diǎn)為.根據(jù)拋物線的定義可知.由于,所以,所以,所以,所以.故選:D【點(diǎn)睛】本小題主要考查拋物線的定義,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.12、C【解析】
求得雙曲線的漸近線方程,可得圓心到漸近線的距離,由點(diǎn)到直線的距離公式可得的范圍,再由離心率公式計(jì)算即可得到所求范圍.【詳解】雙曲線的一條漸近線為,即,由題意知,直線與圓相切或相離,則,解得,因此,雙曲線的離心率.故選:C.【點(diǎn)睛】本題考查雙曲線的離心率的范圍,注意運(yùn)用圓心到漸近線的距離不小于半徑,考查化簡(jiǎn)整理的運(yùn)算能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、.【解析】
計(jì)算外接圓的半徑,并假設(shè)外接球的半徑為R,可得球心在過外接圓圓心且垂直圓面的垂線上,然后根據(jù)面,即可得解.【詳解】由題意可知,,所以可得面,設(shè)外接圓的半徑為,由正弦定理可得,即,,設(shè)三棱錐外接球的半徑,因?yàn)橥饨忧虻那蛐臑檫^底面圓心垂直于底面的直線與中截面的交點(diǎn),則,所以外接球的表面積為.故答案為:.【點(diǎn)睛】本題考查三棱錐的外接球的應(yīng)用,屬于中檔題.14、2【解析】
變換得到,展開式的通項(xiàng)為,計(jì)算得到答案.【詳解】,的展開式的通項(xiàng)為:.含項(xiàng)的系數(shù)為:.故答案為:.【點(diǎn)睛】本題考查了二項(xiàng)式定理的應(yīng)用,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.15、【解析】
計(jì)算得到||,||cosα﹣1,解得cosα,根據(jù)三角函數(shù)的有界性計(jì)算范圍得到答案.【詳解】由()?()=0可得()?||?||cosα﹣1×2cos||?||cosα﹣1,α為與的夾角.再由2?1+4+2×1×2cos7可得||,∴||cosα﹣1,解得cosα.∵0≤α≤π,∴﹣1≤cosα≤1,∴1,即||+1≤0,解得||,故答案為.【點(diǎn)睛】本題考查了向量模的范圍,意在考查學(xué)生的計(jì)算能力,利用三角函數(shù)的有界性是解題的關(guān)鍵.16、0.380.9【解析】
考慮恰有一件的三種情況直接計(jì)算得到概率,隨機(jī)變量的可能取值為,計(jì)算得到概率,再計(jì)算數(shù)學(xué)期望得到答案.【詳解】第一次燒制后恰有一件產(chǎn)品合格的概率為:.甲、乙、丙三件產(chǎn)品合格的概率分別為:,,.故隨機(jī)變量的可能取值為,故;;;.故.故答案為:0.38;0.9.【點(diǎn)睛】本題考查了概率的計(jì)算,數(shù)學(xué)期望,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)答案不唯一,具體見解析(2)證明見解析【解析】
(1)根據(jù)題意得,分與討論即可得到函數(shù)的單調(diào)性;(2)根據(jù)題意構(gòu)造函數(shù),得,參變分離得,分析不等式,即轉(zhuǎn)化為,設(shè),再構(gòu)造函數(shù),利用導(dǎo)數(shù)得單調(diào)性,進(jìn)而得證.【詳解】(1)依題意,當(dāng)時(shí),,①當(dāng)時(shí),恒成立,此時(shí)在定義域上單調(diào)遞增;②當(dāng)時(shí),若,;若,;故此時(shí)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.(2)方法1:由得令,則,依題意有,即,要證,只需證(不妨設(shè)),即證,令,設(shè),則,在單調(diào)遞減,即,從而有.方法2:由得令,則,當(dāng)時(shí),時(shí),故在上單調(diào)遞增,在上單調(diào)遞減,不妨設(shè),則,要證,只需證,易知,故只需證,即證令,(),則==,(也可代入后再求導(dǎo))在上單調(diào)遞減,,故對(duì)于時(shí),總有.由此得【點(diǎn)睛】本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及分類討論思想,轉(zhuǎn)化思想,屬于難題.18、(1);(2).【解析】
(1)正弦定理的邊角轉(zhuǎn)換,以及兩角和的正弦公式展開,特殊角的余弦值即可求出答案;(2)構(gòu)造齊次式,利用正弦定理的邊角轉(zhuǎn)換,得到,結(jié)合余弦定理得到【詳解】解:(1)由已知,得又∵∴∴,因?yàn)榈谩摺?(2)∵又由余弦定理,得∴【點(diǎn)睛】1.考查學(xué)生對(duì)正余弦定理的綜合應(yīng)用;2.能處理基本的邊角轉(zhuǎn)換問題;3.能利用特殊的三角函數(shù)值推特殊角,屬于中檔題19、(1);(2).【解析】
(1)利用正弦定理邊化角,再利用余弦定理求解即可.(2)為為的中線,所以再平方后利用向量的數(shù)量積公式進(jìn)行求解,再代入可解得,再代入面積公式求解即可.【詳解】(1)由,可得,由余弦定理可得,故.(2)因?yàn)闉榈闹芯€,所以,兩邊同時(shí)平方可得,故.因?yàn)?所以.所以的面積.【點(diǎn)睛】本題主要考查了利用正余弦定理與面積公式求解三角形的問題,同時(shí)也考查了向量在解三角形中的運(yùn)用,屬于中檔題.20、(1)證明見解析;(2).【解析】
(1)證明,得到平面,得到證明.(2)以點(diǎn)為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,平面的一個(gè)法向量為,平面的一個(gè)法向量為,計(jì)算夾角得到答案.【詳解】(1)因?yàn)樗倪呅问橇庑?,且,所以是等邊三角形,又因?yàn)槭堑闹悬c(diǎn),所以,又因?yàn)?,,所以,又,,,所以,又,,所以平面,所以,又因?yàn)槭橇庑?,,所以,又,所以平面,所?(2)由題意結(jié)合菱形的性質(zhì)易知,,,以點(diǎn)為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,則,,,,,設(shè)平面的一個(gè)法向量為,則:,據(jù)此可得平面的一個(gè)法向量為,設(shè)平面的一個(gè)法向量為,則:,據(jù)此可得平面的一個(gè)法向量為,,平面與平面所成銳二面角的余弦值.【點(diǎn)睛】本題考查了線線垂直,二面角,意在考查學(xué)生的計(jì)算能力和空間想象能力.21、(1)證明見解析;(2).【解析】
(1)利用,利用正弦定理,化簡(jiǎn)即可證明(2)利用(1),得到當(dāng)時(shí),,得出,得出,然后可得【詳解】證明:(1)據(jù)題意,得,∴,∴.又∵,∴,∴.解:(2)由(1)求解知,.∴當(dāng)時(shí),.又,∴,∴,∴.【點(diǎn)睛】本題考查正弦與余弦定理的應(yīng)用,屬于基礎(chǔ)題22、(1)證明見詳解;(2)【解析】
(1)求出函數(shù)的導(dǎo)函數(shù),由在處取得極值1,可得且.解出,構(gòu)造函數(shù),分析其單調(diào)性,結(jié)合,即可得到的范圍,命題得證;
(2)由分離參數(shù),得到恒成立,構(gòu)造函數(shù),求導(dǎo)函數(shù),再構(gòu)造函數(shù),進(jìn)行二次求導(dǎo).由知,則在上單調(diào)遞增.根據(jù)零點(diǎn)存在定理可知有唯一零點(diǎn),且.由此判斷出時(shí),單調(diào)遞減,時(shí),單調(diào)遞增,則,即.由得,再次構(gòu)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度印刷廠與出版社合作打印合同范本4篇
- 2025年度外墻保溫技術(shù)改造項(xiàng)目施工合同書3篇
- 2025年度生態(tài)旅游開發(fā)承包合同模板4篇
- 2024舞蹈賽事組織與管理服務(wù)合同
- 2025年度特色小吃店聯(lián)合經(jīng)營(yíng)合同3篇
- 2025年度廚房設(shè)備安裝與用戶培訓(xùn)支持合同3篇
- 2025年度物流中心承包經(jīng)營(yíng)合作協(xié)議書4篇
- 2024退學(xué)協(xié)議書:涉及在線教育平臺(tái)學(xué)員退費(fèi)及課程重置合同3篇
- 2024網(wǎng)絡(luò)安全防護(hù)系統(tǒng)技術(shù)開發(fā)與服務(wù)合同
- 2024版設(shè)備軟件采購(gòu)及技術(shù)服務(wù)合同
- 上海車位交易指南(2024版)
- 醫(yī)學(xué)脂質(zhì)的構(gòu)成功能及分析專題課件
- 通用電子嘉賓禮薄
- 錢素云先進(jìn)事跡學(xué)習(xí)心得體會(huì)
- 道路客運(yùn)車輛安全檢查表
- 宋曉峰辣目洋子小品《來(lái)啦老妹兒》劇本臺(tái)詞手稿
- 附錄C(資料性)消防安全評(píng)估記錄表示例
- 噪音檢測(cè)記錄表
- 推薦系統(tǒng)之協(xié)同過濾算法
- 提高筒倉(cāng)滑模施工混凝土外觀質(zhì)量QC成果PPT
- 小學(xué)期末班級(jí)頒獎(jiǎng)典禮動(dòng)態(tài)課件PPT
評(píng)論
0/150
提交評(píng)論