版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023-2024學年浙江省衢州市高二上數(shù)學期末復(fù)習檢測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.一組“城市平安建設(shè)”的滿意度測評結(jié)果,,…,的平均數(shù)為116分,則,,…,,116的()A.平均數(shù)變小 B.平均數(shù)不變C.標準差不變 D.標準差變大2.在正方體中,分別為的中點,為側(cè)面的中心,則異面直線與所成角的余弦值為()A. B.C. D.3.若不等式在上有解,則的最小值是()A.0 B.-2C. D.4.已知函數(shù),當時,函數(shù)在,上均為增函數(shù),則的取值范圍是A. B.C. D.5.已知拋物線,過拋物線的焦點作軸的垂線,與拋物線交于、兩點,點的坐標為,且為直角三角形,則以直線為準線的拋物線的標準方程為()A. B.C. D.6.執(zhí)行如圖所示的程序框圖,若輸出的的值為,則判斷框中應(yīng)填入()A.? B.?C.? D.?7.已知等差數(shù)列的公差,若,,則該數(shù)列的前項和的最大值為()A.30 B.35C.40 D.458.命題;命題.則A.“或”為假 B.“且”為真C.真假 D.假真9.若實數(shù)滿足,則點不可能落在()A.第一象限 B.第二象限C.第三象限 D.第四象限10.已知直線平分圓C:,則最小值為()A.3 B.C. D.11.下列說法中正確的是()A.棱柱的側(cè)面可以是三角形B.棱臺的所有側(cè)棱延長后交于一點C.所有幾何體的表面都能展開成平面圖形D.正棱錐的各條棱長都相等12.若直線與曲線有公共點,則b的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知點P是拋物線上的一個動點,則點P到點M(0,2)的距離與點P到該拋物線準線的距離之和的最小值為______________14.若拋物線:上的一點到它的焦點的距離為3,則__.15.如果圓錐的底面圓半徑為1,母線長為2,則該圓錐的側(cè)面積為___16.若“”是真命題,則實數(shù)的最小值為_____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系內(nèi),已知的三個頂點坐標分別為(1)求邊垂直平分線所在的直線的方程;(2)若的面積為5,求點的坐標18.(12分)已知拋物線過點,O為坐標原點(1)求焦點的坐標及其準線方程;(2)拋物線C在點A處的切線記為l,過點A作與切線l垂直的直線,與拋物線C的另一個交點記為B,求的面積19.(12分)如圖,在正四棱柱中,是上的點,滿足為等邊三角形.(1)求證:平面;(2)求二面角的余弦值.20.(12分)已知等差數(shù)列中,,.(1)求的通項公式;(2)若,求數(shù)列的前n項和.21.(12分)如圖,在三棱柱中,點在底面內(nèi)的射影恰好是點,是的中點,且滿足(1)求證:平面;(2)已知,直線與底面所成角的大小為,求二面角的大小22.(10分)已知數(shù)列的前項和為,并且滿足(1)求數(shù)列的通項公式;(2)若,數(shù)列的前項和為,求證:
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】利用平均數(shù)、方差的定義和性質(zhì)直接求出,,…,,116的平均數(shù)、方差從而可得答案.【詳解】,,…,的平均數(shù)為116分,則,,…,,116的平均數(shù)為設(shè),,…,的方差為則所以則,,…,,116的方差為所以,,…,,116的平均數(shù)不變,方差變小.標準差變小.故選:B2、A【解析】建立空間直角坐標系,用空間向量求解異面直線夾角的余弦值.【詳解】如圖,以D為坐標原點,DA所在直線為x軸,DC所在直線為y軸,所在直線為z軸建立空間直角坐標系,設(shè)正方體棱長為2,則,,,,則,,設(shè)異面直線與所成角為(),則.故選:A3、D【解析】將題設(shè)條件轉(zhuǎn)化為在上有解,然后求出的最大值即可得解.【詳解】不等式在上有解,即為在上有解,設(shè),則在上單調(diào)遞減,所以,所以,即,故選:D.【點睛】本題主要考查二次不等式能成立問題,可以選擇分離參數(shù)轉(zhuǎn)化為最值問題,也可以進行分情況討論.4、A【解析】由,函數(shù)在上均為增函數(shù),恒成立,,設(shè),則,又設(shè),則滿足線性約束條件,畫出可行域如圖所示,由圖象可知在點取最大值為,在點取最小值.則的取值范圍是,故答案選A考點:利用導數(shù)研究函數(shù)的性質(zhì),簡單的線性規(guī)劃5、B【解析】設(shè)點位于第一象限,求得直線的方程,可得出點的坐標,由拋物線的對稱性可得出,進而可得出直線的斜率為,利用斜率公式求得的值,由此可得出以直線為準線的拋物線的標準方程.【詳解】設(shè)點位于第一象限,直線的方程為,聯(lián)立,可得,所以,點.為等腰直角三角形,由拋物線的對稱性可得出,則直線的斜率為,即,解得.因此,以直線為準線的拋物線的標準方程為.故選:B.【點睛】本題考查拋物線標準方程的求解,考查計算能力,屬于中等題.6、C【解析】本題為計算前項和,模擬程序,實際計算求和即可得到的值.【詳解】由題意可知:輸出的的值為數(shù)列的前項和.易知,則,令,解得.即前7項的和.為故判斷框中應(yīng)填入“?”.故選:C.7、D【解析】利用等差數(shù)列的性質(zhì)求出公差以及首項,再由等差數(shù)列的前項和公式即可求解.【詳解】等差數(shù)列,由,有,又,公差,所以,,得,,,∴當或10時,最大,,故選:D8、D【解析】命題:可能為0,不為0,假命題,命題:,為真命題,所以“或”為真命題,“且”為假命題.選D.9、B【解析】作出給定的不等式組表示的平面區(qū)域,觀察圖形即可得解.【詳解】因?qū)崝?shù)滿足,作出不等式組表示的平面區(qū)域,如圖中陰影部分,觀察圖形知,陰影區(qū)域不過第二象限,即點不可能落在第二象限.故選:B10、D【解析】根據(jù)直線過圓心求得,再利用基本不等式求和的最小值即可.【詳解】根據(jù)題意,直線過點,即,則,當且僅當,即時取得最小值.故選:D.11、B【解析】根據(jù)棱柱、棱臺、球、正棱錐結(jié)構(gòu)特征依次判斷選項即可.【詳解】棱柱的側(cè)面都是平行四邊形,A不正確;棱臺是由對應(yīng)的棱錐截得的,B正確;不是所有幾何體的表面都能展開成平面圖形,例如球不能展開成平面圖形,C不正確;正棱錐的各條棱長并不是都相等,應(yīng)該為正棱錐的側(cè)棱長都相等,所以D不正確.故選:B.12、D【解析】將本題轉(zhuǎn)化為直線與半圓的交點問題,數(shù)形結(jié)合,求出的取值范圍【詳解】將曲線的方程化簡為即表示以為圓心,以2為半徑的一個半圓,如圖所示:當直線經(jīng)過時最大,即,當直線與下半圓相切時最小,由圓心到直線距離等于半徑2,可得:解得(舍去),或結(jié)合圖象可得故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由拋物線的定義得:,所以,當三點共線時,最小可得答案.【詳解】如圖所示:,由拋物線的定義得:,所以,由圖象知:當三點共線時,最小,.故答案為:.14、【解析】通過拋物線的定義列式求解【詳解】根據(jù)拋物線的定義知,所以.故答案為:15、2π【解析】由圓錐的側(cè)面積公式即可求解【詳解】由題意,圓錐底面周長為2π×1=2π,又母線長為2,所以圓錐的側(cè)面積故答案為:2π.16、1【解析】若“”是真命題,則大于或等于函數(shù)在的最大值因為函數(shù)在上為增函數(shù),所以,函數(shù)在上的最大值為1,所以,,即實數(shù)的最小值為1.所以答案應(yīng)填:1.考點:1、命題;2、正切函數(shù)的性質(zhì).三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)或【解析】(1)由題意直線的斜率公式,兩直線垂直的性質(zhì),求出的斜率,再用點斜式求直線的方程(2)根據(jù)的面積為5,求得點到直線的距離,再利用點到直線的距離公式,求得的值【詳解】解:(1),,的中點的坐標為,又設(shè)邊的垂直平分線所在的直線的斜率為則,可得的方程為,即邊的垂直平分線所在的直線的方程(2)邊所在的直線方程為設(shè)邊上的高為即點到直線的距離為且解得解得或,點的坐標為或18、(1)焦點,準線方程;(2)12.【解析】(1)將點A坐標代入求出,寫出拋物線方程即可作答.(2)由(1)的結(jié)論求出切線l的斜率,進而求得直線AB方程,聯(lián)立直線AB與拋物線C的方程,求出弦AB長及點O到直線AB距離計算作答.【小問1詳解】依題意,,解得,則拋物線的方程為:,所以拋物線的焦點,準線方程為.【小問2詳解】顯然切線l的斜率存在,設(shè)切線l的方程為:,由消去x并整理得:,依題意得,解得,因直線,則直線AB的斜率為-1,方程為:,即,由消去x并整理得:,解得,因此有,而,則,而點到直線AB:的距離,則,所以的面積是12.19、(1)證明見解析(2)【解析】(1)根據(jù)題意證明,,然后根據(jù)線面垂直的判定定理證明問題;(2)以,,為軸的正方向建立空間直角坐標系,求平面,平面的法向量,求法向量的夾角,根據(jù)二面角的余弦值與法向量的夾角的余弦的關(guān)系確定二面角的余弦值.【小問1詳解】由題意,,等邊三角形,,∵平面ABCD,∴,則,即為中點.連接,∵平面,平面,∴,易得,則,又,于是,即,同理,即,又,平面平面.【小問2詳解】由題意直線平面,四邊形為正方形,故以,,為軸的正方向建立空間直角坐標系,則,.設(shè)面的法向量為,同理可得面的法向量,∴二面角的余弦值為20、(1);(2).【解析】(1)先設(shè)等差數(shù)列的公差為,由題中條件,列出方程求出首項和公差,即可得出通項公式;(2)根據(jù)(1)的結(jié)果,得到,再由等比數(shù)列的求和公式,即可得出結(jié)果.【詳解】(1)設(shè)等差數(shù)列的公差為,因為,,所以,解得,所以;(2)由(1)可得,,即數(shù)列為等比數(shù)列,所以數(shù)列的前n項和.21、(1)證明見解析;(2).【解析】(1)分別證明出和,利用線面垂直的判定定理即可證明;(2)以C為原點,為x、y、z軸正方向建立空間直角坐標系,用向量法求二面角的平面角.【小問1詳解】因為點在底面內(nèi)的射影恰好是點,所以面.因為面,所以.因為是的中點,且滿足.所以,所以.因為,所以,即,所以.因為,面,面,所以平面.【小問2詳解】∵面,∴直線與底面所成角為,即.因為,所以由(1)知,,因,所以,.如圖示,以C為原點,為x、y、z軸正方向建立空間直角坐標系.則,,,,所以,設(shè),由得,,即.則.設(shè)平面BDC1的一個法向量為,則,不妨令,則.因為面,所以面的一
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 個人抵押貸款協(xié)議模板版
- 專業(yè)借款中介服務(wù)協(xié)議2024版B版
- 月度團隊總結(jié)模板
- 2025年度茶葉品牌加盟連鎖經(jīng)營協(xié)議范本4篇
- 個人吊車租賃協(xié)議
- 二零二五年度跨境電商進口貿(mào)易合同樣本3篇
- 2025年度智能家居系統(tǒng)定制銷售合同4篇
- 2025年度智能交通管理系統(tǒng)全國代理合同4篇
- 二零二五年度存單質(zhì)押養(yǎng)老產(chǎn)業(yè)金融服務(wù)合同3篇
- 2024版移動通信網(wǎng)絡(luò)建設(shè)與維護合同
- 農(nóng)民工工資表格
- 【寒假預(yù)習】專題04 閱讀理解 20篇 集訓-2025年人教版(PEP)六年級英語下冊寒假提前學(含答案)
- 2024年突發(fā)事件新聞發(fā)布與輿論引導合同
- 地方政府信訪人員穩(wěn)控實施方案
- 小紅書推廣合同范例
- 商業(yè)咨詢報告范文模板
- 2024年智能監(jiān)獄安防監(jiān)控工程合同3篇
- 幼兒園籃球課培訓
- AQ 6111-2023個體防護裝備安全管理規(guī)范知識培訓
- 老干工作業(yè)務(wù)培訓
- 基底節(jié)腦出血護理查房
評論
0/150
提交評論