2023-2024學(xué)年濟南市育英中學(xué)數(shù)學(xué)高二上期末聯(lián)考模擬試題含解析_第1頁
2023-2024學(xué)年濟南市育英中學(xué)數(shù)學(xué)高二上期末聯(lián)考模擬試題含解析_第2頁
2023-2024學(xué)年濟南市育英中學(xué)數(shù)學(xué)高二上期末聯(lián)考模擬試題含解析_第3頁
2023-2024學(xué)年濟南市育英中學(xué)數(shù)學(xué)高二上期末聯(lián)考模擬試題含解析_第4頁
2023-2024學(xué)年濟南市育英中學(xué)數(shù)學(xué)高二上期末聯(lián)考模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023-2024學(xué)年濟南市育英中學(xué)數(shù)學(xué)高二上期末聯(lián)考模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知點在拋物線上,則點到拋物線焦點的距離為()A.1 B.2C.3 D.42.下列關(guān)于拋物線的圖象描述正確的是()A.開口向上,焦點為 B.開口向右,焦點為C.開口向上,焦點為 D.開口向右,焦點為3.已知P是橢圓上的一點,是橢圓的兩個焦點且,則的面積是()A. B.2C. D.14.在空間直角坐標(biāo)系中,點關(guān)于平面的對稱點的坐標(biāo)是()A. B.C. D.5.下面三種說法中,正確說法的個數(shù)為()①如果兩個平面有三個公共點,那么這兩個平面重合;②兩條直線可以確定一個平面;③若,,,則A.1 B.2C.3 D.06.等差數(shù)列中,,則()A. B.C. D.7.曲線y=lnx在點M處的切線過原點,則該切線的斜率為()A.1 B.eC.-1 D.8.“”是“方程為雙曲線方程”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件9.以下四個命題中,正確的是()A.若,則三點共線B.C.為直角三角形的充要條件是D.若為空間的一個基底,則構(gòu)成空間的另一個基底10.已知橢圓與雙曲線有相同的焦點,且它們的離心率之積為1,則橢圓的標(biāo)準(zhǔn)方程為()A. B.C. D.11.在的展開式中,只有第4項的二項式系數(shù)最大,且所有項的系數(shù)和為0,則含的項的系數(shù)為()A.-20 B.-15C.-6 D.1512.已知函數(shù),在上隨機取一個實數(shù),則使得成立的概率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在四棱錐中,是邊長為4的等邊三角形,四邊形ABCD是等腰梯形,,,,若四棱錐的體積為24,則四棱錐外接球的表面積是___________.14.?dāng)?shù)列中,,則______15.已知直線過點,,且是直線的一個方向向量,則__________.16.函數(shù)在區(qū)間上的最小值為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(1)討論的單調(diào)區(qū)間;(2)求在上的最大值.18.(12分)已知數(shù)列滿足(1)證明數(shù)列是等比數(shù)列,并求數(shù)列的通項公式;(2)令,求數(shù)列的前項和19.(12分)已知動圓過定點,且與直線相切.(1)求動圓圓心的軌跡的方程;(2)直線過點與曲線相交于兩點,問:在軸上是否存在定點,使?若存在,求點坐標(biāo),若不存在,請說明理由.20.(12分)球形物體天然萌,某食品廠沿襲老字號傳統(tǒng),獨家制造并使用球形玻璃瓶用于售賣酸梅湯,其中瓶子的制造成本c(分)與瓶子的半徑r(cm)的平方成正比,且當(dāng)cm時,制造成本c為3.2π分,已知每出售1mL的酸梅湯,可獲得0.2分,且制作的瓶子的最大半徑為6cm(1)寫出每瓶酸梅湯的利潤y與r的關(guān)系式(提示:);(2)瓶子半徑多大時,每瓶酸梅湯的利潤最大,最大為多少?(結(jié)果用含π的式子表示)21.(12分)在下列所給的三個條件中任選一個,補充在下面問題中,并完成解答(若選擇多個條件分別解答,則按第一個解答計分).①與直線平行;②與直線垂直;③直線l的一個方向向量為;已知直線l過點,且___________.(1)求直線l的一般方程;(2)若直線l與圓C:相交于M,N兩點,求弦長.22.(10分)在四面體ABCD中,CB=CD,,且E,F(xiàn)分別是AB,BD的中點,求證:(I)直線;(II).

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】先求出拋物線方程,焦點坐標(biāo),再用兩點間距離公式進行求解.【詳解】將代入拋物線中得:,解得:,所以拋物線方程為,焦點坐標(biāo)為,所以點到拋物線焦點的距離為故選:B2、A【解析】把化成拋物線標(biāo)準(zhǔn)方程,依據(jù)拋物線幾何性質(zhì)看開口方向,求其焦點坐標(biāo)即可解決.【詳解】,即.則,即故此拋物線開口向上,焦點為故選:A3、A【解析】設(shè),先求出m、n,再利用面積公式即可求解.【詳解】在中,設(shè),則,解得:.因為,所以,所以的面積是.故選:A4、C【解析】根據(jù)空間里面點關(guān)于面對稱的性質(zhì)即可求解.【詳解】在空間直角坐標(biāo)系中,點關(guān)于平面的對稱點的坐標(biāo)是.故選:C.5、A【解析】對于①,有兩種情況,對于②考慮異面直線,對于③根據(jù)線面公理可判斷.【詳解】如果兩個平面有三個公共點,那么這兩個平面重合或者是相交,故①不正確;兩條異面直線不能確定一個平面,故②不正確;若,,,可知必在交線上,則,故③正確;綜上所述只有一個說法是正確的.故選:A6、C【解析】由等差數(shù)列的前項和公式和性質(zhì)進行求解.【詳解】由題意,得.故選:C.7、D【解析】設(shè)出點坐標(biāo),結(jié)合導(dǎo)數(shù)列方程,由此求得切點坐標(biāo)并求得切線的斜率.【詳解】設(shè)切點為,,故在點的切線的斜率為,所以,所以切點為,切線的斜率為.故選:D8、C【解析】先求出方程表示雙曲線時滿足的條件,然后根據(jù)“小推大”的原則進行判斷即可.【詳解】因方程為雙曲線方程,所以,所以“”是“方程為雙曲線方程”的充要條件.故選:C.9、D【解析】利用向量共線的推論可判斷A,利用數(shù)量積的定義可判斷B,利用充要條件的概念可判斷C,利用基底的概念可判斷D.【詳解】對于A,若,,所以三點不共線,故A錯誤;對于B,因為,故B錯誤;對于C,由可推出為直角三角形,由為直角三角形,推不出,所以為直角三角形的充分不必要條件是,故C錯誤;對于D,若為空間的一個基底,則不共面,若不能構(gòu)成空間的一個基底,設(shè),整理可得,即共面,與不共面矛盾,所以能構(gòu)成空間的另一個基底,故D正確.故選:D.10、A【解析】計算雙曲線的焦點為,離心率,得到橢圓的焦點為,離心率,計算得到答案.【詳解】雙曲線的焦點為,離心率,故橢圓的焦點為,離心率,即.解得,故橢圓標(biāo)準(zhǔn)方程為:.故選:.【點睛】本題考查了橢圓和雙曲線的離心率,焦點,橢圓的標(biāo)準(zhǔn)方程,意在考查學(xué)生的計算能力.11、C【解析】先由只有第4項的二項式系數(shù)最大,求出n=6;再由展開式的所有項的系數(shù)和為0,用賦值法求出,用通項公式求出的項的系數(shù).【詳解】∵在的展開式中,只有第4項的二項式系數(shù)最大,∴在的展開式有7項,即n=6;而展開式的所有項的系數(shù)和為0,令x=1,代入,即,所以.∴是展開式的通項公式為:,要求含的項,只需,解得,所以系數(shù)為.故選:C12、B【解析】首先求不等式的解集,再根據(jù)區(qū)間長度,求幾何概型的概率.【詳解】由,得,解得,在區(qū)間上隨機取一實數(shù),則實數(shù)滿足不等式的概率為故選:B二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】根據(jù)球的截面圓圓心與球心的連線垂直截面可確定垂直平面ABCD,構(gòu)造直角三角形求解球的半徑即可得解.【詳解】如圖,分別取BC,AD的中點,E,連接PE,,,.因為是邊長為4的等邊三角形,所以.因為四邊形ABCD是等腰梯形,,,,所以,.因為四棱錐的體積為24,所以,所以.因為E是AD的中點,所以.因為,所以平面ABCD.因為,所以四邊形ABCD外接圓的圓心為,半徑.設(shè)四棱錐外接球的球心為O,連接,OP,OB,過點О作,垂足為F.易證四邊形是矩形,則,.設(shè)四棱錐外接球的半徑為R,則,即,解得,故四棱錐外接球的表面積是.故答案為:14、1【解析】根據(jù)可得,則,所以可得數(shù)列是以6為周期周期數(shù)列,再由計算出的值,再利用對數(shù)的運算性質(zhì)可求得結(jié)果【詳解】因為,所以,所以,所以數(shù)列是以6為周期的周期數(shù)列,因為,,所以,所以,所以所以,故答案為:115、【解析】由題得,解方程組即得解.【詳解】解:由題得,因為是直線的一個方向向量,所以,所以,所以.故答案為:16、【解析】先對函數(shù)求導(dǎo)判斷其單調(diào)性,然后利用單調(diào)性求函數(shù)的最小值【詳解】解:由,得,當(dāng)且僅當(dāng)時取等號,即取等號,因為,所以函數(shù)在區(qū)間上單調(diào)遞增,所以當(dāng)時,函數(shù)取得最小值0,故答案為:0三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)①,在上單減;②,在上單增,單減;(2).【解析】(1),根據(jù)函數(shù)定義域,分,,討論求解;(2)根據(jù)(1)知:分,,,討論求解.【小問1詳解】解:(1)定義域,①時,成立,所以在上遞減;②時,當(dāng)時,,當(dāng)時,,所以在上單增,單減;【小問2詳解】由(1)知:時,在單減,所以;時,在單減,所以;時,在上單增,上遞減,所以;時,在單增,所以;綜上:.18、(1)證明見解析,(2)【解析】(1)根據(jù)等比數(shù)列的定義證明數(shù)列是以為首項,2為公比的等比數(shù)列,進而求解得答案;(2)根據(jù)錯位相減法求和即可.【小問1詳解】解:數(shù)列滿足,∴數(shù)列是以為首項,2為公比的等比數(shù)列,,即;∴【小問2詳解】解:,,,,19、(1);(2)存在,.【解析】(1)利用兩點間的距離公式和直線與圓相切的性質(zhì)即可得出;(2)假設(shè)存在點,滿足題設(shè)條件,設(shè)直線的方程,根據(jù)韋達定理即可求出點的坐標(biāo)【小問1詳解】設(shè)動圓的圓心,依題意:化簡得:,即為動圓的圓心的軌跡的方程【小問2詳解】假設(shè)存在點,滿足條件,使①,顯然直線斜率不為0,所以由直線過點,可設(shè),由得設(shè),,,,則,由①式得,,即消去,,得,即,,,存在點使得20、(1),(2)當(dāng)時,每瓶酸梅湯的利潤最大,最大利潤為28.8π【解析】(1)直接由條件寫出關(guān)系式即可;(2)直接求導(dǎo)確定單調(diào)性后,求出最大值即可.【小問1詳解】設(shè)瓶子的制造成本c與瓶子的半徑r的平方成正比的比例系數(shù)等于k,則瓶子的制造成本,由題意,當(dāng)時,∴,即瓶子的制造成本∴每瓶酸梅湯的利潤是,∴每瓶酸梅湯的利潤關(guān)于r的函數(shù)關(guān)系式為:,【小問2詳解】由(1)知,則,令,則,當(dāng)時,;當(dāng)時,∴函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,∴當(dāng)時,每瓶酸梅湯的利潤最大,最大利潤為28.8π.21、(1)若選擇①②,則直線方程為:;若選擇③,則直線方程為;(2)若選擇①②,則;若選擇③,則.【解析】(1)根據(jù)所選擇的條件,結(jié)合直線過點,即可寫出直線的方程;(2)利用(1)中所求直線方程,以及弦長公式,即可求得結(jié)果.【小問1詳解】若選①與直線平行,則直線的斜率;又其過點,故直線的方程為,則其一般式為;若選②與直線垂直,則直線的斜率滿足,解得;又其過點,故直線的方程為,則其一般式為;若選③直線l的一個

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論