版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年山東省鄒城一中數(shù)學(xué)高二上期末考試模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.過雙曲線-=1(a>0,b>0)的左焦點F(-c,0)作圓O:x2+y2=a2的切線,切點為E,延長FE交雙曲線于點P,若E為線段FP的中點,則雙曲線的離心率為()A. B.C.+1 D.2.已知直線交圓于A,B兩點,若點滿足,則直線l被圓C截得線段的長是()A.3 B.2C. D.43.已知橢圓和雙曲線有共同焦點,是它們一個交點,且,記橢圓和雙曲線的離心率分別為,則的最大值為A.3 B.2C. D.4.已知一質(zhì)點的運動方程為,其中的單位為米,的單位為秒,則第1秒末的瞬時速度為()A. B.C. D.5.經(jīng)過點且與直線垂直的直線方程為()A. B.C. D.6.在平行六面體ABCD﹣A1B1C1D1中,AC與BD的交點為M,設(shè)=,=,=,則=()A.++ B.+C.++ D.+7.已知三棱柱中,,,D點是線段上靠近A的一個三等分點,則()A. B.C. D.8.下列結(jié)論正確的個數(shù)為()①若,則;②若,則;③若,則;④若,則A.4 B.3C.2 D.19.若點在橢圓的外部,則的取值范圍為()A. B.C. D.10.若函數(shù)在區(qū)間單調(diào)遞增,則的取值范圍是()A. B.C. D.11.甲、乙兩組數(shù)的數(shù)據(jù)如莖葉圖所示,則甲、乙的平均數(shù)、方差、極差及中位數(shù)相同的是()A.極差 B.方差C.平均數(shù) D.中位數(shù)12.如圖,奧運五環(huán)由5個奧林匹克環(huán)套接組成,環(huán)從左到右互相套接,上面是藍(lán)、黑、紅環(huán),下面是黃,綠環(huán),整個造形為一個底部小的規(guī)則梯形.為迎接北京冬奧會召開,某機構(gòu)定制一批奧運五環(huán)旗,已知該五環(huán)旗的5個奧林匹克環(huán)的內(nèi)圈半徑為1,外圈半徑為1.2,相鄰圓環(huán)圓心水平距離為2.6,兩排圓環(huán)圓心垂直距離為1.1,則相鄰兩個相交的圓的圓心之間的距離為()A. B.2.8C. D.2.9二、填空題:本題共4小題,每小題5分,共20分。13.若函數(shù)在區(qū)間上單調(diào)遞減,則實數(shù)的取值范圍是________;14.若正數(shù)x、y滿足,則的最小值等于________.15.已知拋物線的頂點為坐標(biāo)原點,焦點坐標(biāo)是,則該拋物線的標(biāo)準(zhǔn)方程為___________16.直線的傾斜角為_______________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線的頂點在坐標(biāo)原點,對稱軸為軸,焦點為,拋物線上一點的橫坐標(biāo)為2,且(1)求拋物線的方程;(2)過點作直線交拋物線于兩點,設(shè),判斷是否為定值?若是,求出該定值;若不是,說明理由.18.(12分)已知橢圓與拋物線有一個相同的焦點,且該橢圓的離心率為,(Ⅰ)求該橢圓的標(biāo)準(zhǔn)方程:(Ⅱ)求過點的直線與該橢圓交于A,B兩點,O為坐標(biāo)原點,若,求的面積.19.(12分)在正方體中,E,F(xiàn)分別是,的中點(1)求證:∥平面;(2)求平面與平面EDC所成的二面角的正弦值20.(12分)已知拋物線C:上一點與焦點F的距離為(1)求和p的值;(2)直線l:與C相交于A,B兩點,求直線AM,BM的斜率之積21.(12分)已知數(shù)列是遞增的等比數(shù)列,滿足,(1)求數(shù)列的通項公式;(2)若,求數(shù)列的前n項和22.(10分)已知數(shù)列{an}的前n項和為Sn,.(1)求數(shù)列{an}通項公式;(2)求數(shù)列的前n項和,求使不等式成立的最大整數(shù)m的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】設(shè)F′為雙曲線的右焦點,連接OE,PF′,根據(jù)圓的切線性質(zhì)和三角形中位線得到|OE|=a,|PF′|=2a,利用雙曲線的定義求得|PF|=4a,得到|EF|=2a,在Rt△OEF中,利用勾股定理建立關(guān)系即可求得離心率的值.【詳解】不妨設(shè)E在x軸上方,F(xiàn)′為雙曲線的右焦點,連接OE,PF′,如圖所示:因為PF是圓O的切線,所以O(shè)E⊥PE,又E,O分別為PF,F(xiàn)F′的中點,所以|OE|=|PF′|,又|OE|=a,所以|PF′|=2a,根據(jù)雙曲線的定義,|PF|-|PF′|=2a,所以|PF|=4a,所以|EF|=2a,在Rt△OEF中,|OE|2+|EF|2=|OF|2,即a2+4a2=c2,所以e=,故選A.【點睛】本題考查雙曲線的離心率的求法,聯(lián)想到雙曲線的另一個焦點,作輔助線,利用雙曲線的定義是求解離心率問題的有效方法.2、B【解析】由題設(shè)知為圓的圓心且A、B在圓上,根據(jù)已知及向量數(shù)量積的定義求的大小,進而判斷△的形狀,即可得直線l被圓C截得線段的長.【詳解】∵點為圓的圓心且A、B在圓上,又,∴,∴,又,∴,故△為等邊三角形,∴直線l被圓C截得線段的長是2故選:B3、D【解析】設(shè)橢圓長半軸長為a1,雙曲線的半實軸長a2,焦距2c.根據(jù)橢圓及雙曲線的定義可以用a1,a2表示出|PF1|,|PF2|,在△F1PF2中根據(jù)余弦定理可得到,利用基本不等式可得結(jié)論【詳解】如圖,設(shè)橢圓的長半軸長為a1,雙曲線的半實軸長為a2,則根據(jù)橢圓及雙曲線的定義:|PF1|+|PF2|=2a1,|PF1|﹣|PF2|=2a2,∴|PF1|=a1+a2,|PF2|=a1﹣a2,設(shè)|F1F2|=2c,∠F1PF2=,則:在△PF1F2中,由余弦定理得,4c2=(a1+a2)2+(a1﹣a2)2﹣2(a1+a2)(a1﹣a2)cos∴化簡得:a12+3a22=4c2,該式可變成:,∴≥2∴,故選D【點睛】本題考查圓錐曲線的共同特征,考查通過橢圓與雙曲線的定義求焦點三角形三邊長,考查利用基本不等式求最值問題,屬于中檔題4、C【解析】求出即得解.【詳解】解:由題意得,故質(zhì)點在第1秒末的瞬時速度為.故選:C5、A【解析】根據(jù)點斜式求得正確答案.【詳解】直線的斜率為,經(jīng)過點且與直線垂直的直線方程為,即.故選:A6、B【解析】利用向量三角形法則、平行四邊形法則、向量共線定理即可得出【詳解】如圖所示,∵=+,又=,=-,=,∴=+,故選:B7、A【解析】在三棱柱中,,轉(zhuǎn)化為結(jié)合已知條件計算即可.【詳解】在三棱柱中,滿足,且,則,,D點是線段上靠近A的一個三等分點,則,由向量的減法運算得,.故選:A【點睛】關(guān)鍵點點睛:在三棱柱中,,由向量的減法運算得,再展開利用數(shù)量積運算.8、D【解析】根據(jù)常數(shù)函數(shù)的導(dǎo)數(shù)為0,可判斷①;根據(jù)冪函數(shù)的求導(dǎo)公式,可判斷②;根據(jù)指數(shù)函數(shù)以及對數(shù)函數(shù)的求導(dǎo)公式,可判斷③④.【詳解】由得:,故①錯誤;對于,,故,故②正確;對于,則,故③錯誤;對于,則,故④錯誤,故選:D9、B【解析】根據(jù)題中條件,得到,求解,即可得出結(jié)果.【詳解】因為點在橢圓的外部,所以,即,解得或.故選:B.10、A【解析】函數(shù)在區(qū)間上單調(diào)遞增,轉(zhuǎn)化為導(dǎo)函數(shù)在該區(qū)間上大于等于0恒成立,進而求出結(jié)果.【詳解】由題意得:在區(qū)間上恒成立,而,所以.故選:A11、C【解析】根據(jù)莖葉圖依次計算甲和乙的平均數(shù)、方差、中位數(shù)和極差即可得到結(jié)果.【詳解】甲的平均數(shù)為:;乙的平均數(shù)為:;甲和乙的平均數(shù)相同;甲的方差為:;乙的方差為:;甲和乙的方差不相同;甲的極差為:;乙的極差為:;甲和乙的極差不相同;甲的中位數(shù)為:;乙的中位數(shù)為:;甲和乙的中位數(shù)不相同.故選:C.12、C【解析】根據(jù)題意作出輔助線直接求解即可.【詳解】如圖所示,由題意可知,在中,取的中點,連接,所以,,又因為,所以,所以即相鄰兩個相交的圓的圓心之間的距離為.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】函數(shù),又函數(shù)在區(qū)間上單調(diào)遞減∴在區(qū)間上恒成立即,解得:,當(dāng)時,經(jīng)檢驗適合題意故答案為【點睛】f(x)為增函數(shù)的充要條件是對任意的x∈(a,b)都有f′(x)≥0且在(a,b)內(nèi)的任一非空子區(qū)間上f′(x)≠0.應(yīng)注意此時式子中的等號不能省略,否則漏解14、9【解析】把要求的式子變形為,利用基本不等式即可得結(jié)果.【詳解】因為,所以,當(dāng)且僅當(dāng)時取等號,故答案為.【點睛】本題主要考查利用基本不等式求最值,屬于難題.利用基本不等式求最值時,一定要正確理解和掌握“一正,二定,三相等”的內(nèi)涵:一正是,首先要判斷參數(shù)是否為正;二定是,其次要看和或積是否為定值(和定積最大,積定和最小);三相等是,最后一定要驗證等號能否成立(主要注意兩點,一是相等時參數(shù)否在定義域內(nèi),二是多次用或時等號能否同時成立).15、【解析】根據(jù)焦點坐標(biāo)即可得到拋物線的標(biāo)準(zhǔn)方程【詳解】因為拋物線的頂點為坐標(biāo)原點,焦點坐標(biāo)是,所以,解得,拋物線的標(biāo)準(zhǔn)方程為故答案為:16、【解析】由直線的斜率為,得到,即可求解.【詳解】由題意,可知直線的斜率為,設(shè)直線的傾斜角為,則,解得,即換線的傾斜角為.【點睛】本題主要考查直線的傾斜角的求解問題,其中解答中熟記直線的傾斜角與斜率的關(guān)系,合理準(zhǔn)確計算是解答的關(guān)鍵,著重考查了運算與求解能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)是,0【解析】(1)根據(jù)題意,設(shè)拋物線的方程為:,則,,進而根據(jù)得,進而得答案;(2)直線的方程為,進而聯(lián)立方程,結(jié)合韋達(dá)定理與向量數(shù)量積運算化簡整理即可得答案.【小問1詳解】解:由題意,設(shè)拋物線的方程為:,所以點的坐標(biāo)為,點的坐標(biāo)為,因為,所以,即,解得.所以拋物線的方程為:【小問2詳解】解:設(shè)直線的方程為,則聯(lián)立方程得,所以,,因為,所以.所以為定值.18、(Ⅰ);(Ⅱ)【解析】(Ⅰ)根據(jù)題意可以求出橢圓的焦點,再根據(jù)橢圓的離心率公式,求出的值,然后結(jié)合橢圓的關(guān)系求出,最后寫出橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)根據(jù)平面向量共線定理可以得出A,B兩點橫坐標(biāo)和縱坐標(biāo)之間的關(guān)系,再設(shè)出直線AB方程與橢圓方程聯(lián)立,利用根與系數(shù)關(guān)系求出直線AB的斜率,最后根據(jù)三角形面積結(jié)合根與系數(shù)關(guān)系求出的面積.【詳解】(Ⅰ)由題意,設(shè)橢圓的標(biāo)準(zhǔn)方程為,由題意可得,又,,所以橢圓的標(biāo)準(zhǔn)方程為(Ⅱ)設(shè),,由得:,驗證易知直線AB的斜率存在,設(shè)直線AB的方程為聯(lián)立橢圓方程,得:,整理得:,得:,將代入得,所以的面積.【點睛】本題考查了求橢圓的標(biāo)準(zhǔn)方程,考查了利用一元二次方程根與系數(shù)關(guān)系求直線斜率和三角形面積問題,考查了數(shù)學(xué)運算能力.19、(1)見解析;(2).【解析】(1)連接,,連接,證明CE∥即可;(2)建立空間直角坐標(biāo)系,求出平面與平面EDC的法向量,利用向量法求二面角的正弦值.【小問1詳解】如圖,連接,,連接,∵BC∥且BC=,∴四邊形是平行四邊形,∴∥且,∵E是中點,G是中點,∴∥CG且,∴四邊形是平行四邊形,∴∥CE,∵平面,CE平面,∴CE∥平面;【小問2詳解】如圖建立空間直角坐標(biāo)系,設(shè)正方體的棱長為2,則,則,設(shè)平面的法向量為,則,?。辉O(shè)平面EDC的法向量為,則,取,則;設(shè)平面與平面EDC所成的二面角的平面角為α,則,∴20、(1)(2)【解析】(1)結(jié)合拋物線的定義以及點坐標(biāo)求得以及.(2)求得的坐標(biāo),由此求得直線AM,BM的斜率之積.【小問1詳解】依題意拋物線C:上一點與焦點F的距離為,根據(jù)拋物線的定義可知,將點坐標(biāo)代入拋物線方程得.【小問2詳解】由(1)得拋物線方程為,,不妨設(shè)A在B下方,所以.21、(1)(2)【解析】(1)由等比數(shù)列的通項公式計算基本量從而得出的通項公式;(2)由(1)可得,再由裂項相消法求和即可.【小問1詳解】設(shè)等比數(shù)列的公比為q,所以有,,聯(lián)立兩式解得或又因為數(shù)列是遞增的等比數(shù)列,所以,所以數(shù)列的通項公式為;【小問2詳解】∵,∴,∴22、(1);(2).【解析】(1)根據(jù)給定
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《深圳大學(xué)圖書館》課件
- 《電子服務(wù)概論》課件
- 2024屆安徽省部分學(xué)校高三上學(xué)期期末考試歷史試題(解析版)
- 2024年遼寧輕工職業(yè)學(xué)院單招職業(yè)技能測試題庫完整答案
- 單位管理制度集粹選集【人事管理篇】十篇
- 單位管理制度匯編大全【員工管理篇】
- 單位管理制度合并選集職工管理篇
- 《法國雪鐵龍公園》課件
- 單位管理制度分享合集【職工管理篇】
- 單位管理制度呈現(xiàn)大全【職工管理】十篇
- 消防工程火災(zāi)自動報警及聯(lián)動控制系統(tǒng)安裝施工方案
- 2024年氯化工藝作業(yè)模擬考試題庫試卷(含參考答案)
- 2024售后服務(wù)年終總結(jié)
- 中學(xué)消防安全應(yīng)急演練方案
- 2.1.1 區(qū)域發(fā)展的自然環(huán)境基礎(chǔ) 課件 高二地理人教版(2019)選擇性必修2
- ASTM-A269-A269M無縫和焊接奧氏體不銹鋼管
- 中、高級鉗工訓(xùn)練圖紙
- 2024-2030年中國車載動態(tài)稱重行業(yè)投融資規(guī)模與發(fā)展態(tài)勢展望研究報告
- 乒乓球教案完整版本
- 2024年重慶公交車從業(yè)資格證考試題庫
- 銀行解押合同范本
評論
0/150
提交評論