材料科學(xué)與工程專業(yè)英語課件_第1頁
材料科學(xué)與工程專業(yè)英語課件_第2頁
材料科學(xué)與工程專業(yè)英語課件_第3頁
材料科學(xué)與工程專業(yè)英語課件_第4頁
材料科學(xué)與工程專業(yè)英語課件_第5頁
已閱讀5頁,還剩197頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

HubeiUniversityofAutomotiveTechnologySpecialtyEnglish

1、語法較為簡單,多用被動(dòng)語態(tài),從句等。2、專有名詞多,有規(guī)律可循(構(gòu)詞法)(讀音較為復(fù)雜,無規(guī)律)3、寫作要求清晰明了如何學(xué)習(xí)?(1)記憶常見科技詞匯(構(gòu)詞法)(2)多閱讀科技文章,學(xué)習(xí)如何用英語表達(dá)。避免自創(chuàng)的新奇語句。(3)課后練習(xí)翻譯,寫作(Practicemakesperfect.)★CharacteristicsofSpecialtyEnglishChapter1

MaterialsandHeatTreatment◆

ReadingandanswerquestionsThenewwordsyoumaybemeet:

metallic金屬的corrosion腐蝕ductile延展ballbearing滾珠軸承multiphase多相wrought加工的,精細(xì)的malleable可鍛的有延展性的FerrousAlloysArbitrary專橫的,獨(dú)斷的,任意的Smelt熔煉,精煉Intricate復(fù)雜的,精巧的Combination結(jié)合,合并,化合物FerrousAlloysMorethan90%byweightofthemetallicmaterialsusedbyhumanbeingsareferrousalloys.Thisrepresentsanimmensefamilyofengineeringmaterialswithawiderangeofmicrostructureandrelatedproperties.FerrousAlloysThemajorityofengineeringdesignsthatrequirestructuralloadsupportorpowertransmissioninvolveferrousalloys.asapracticalmatter,thesealloysfallintotwobroadcategoriesbasedonthecarboninthealloycomposition.FerrousAlloysSteelgenerallycontainsbetween0.05wand2.0wcarbon.Thecastironsgenerallycontainbetween2.0wand4.5wcarbon.

Withinthesteelcategory,weshalldistinguishwhetherornotasignificantamountofalloyingelementsotherthancarbonisused.

對(duì)于鋼的區(qū)分,我們要弄清楚的是是否含有有效量的合金元素而不是碳的含量。

FerrousAlloysFerrousAlloysAcompositionof5wtotalnoncarbonadditionswillserveasanarbitraryboundarybetweenlowalloyandhighalloysteels.FerrousAlloysThesealloyadditionsarechosencarefullybecausetheyinvariablybringwiththemsharplyincreasedmaterialcosts.

TheyarejustifiedonlybyessentialimprovementsinpropertiessuchashigherstrengthorimprovedcorrosionresistancequestionsHowdoyoudistinguishsteelfromcastiron?Howdoyoudistinguishlowalloysteelfromhighalloysteel?1.1.1IronandSteelTheearthcontainsalargenumberofmetalswhichareusefultoman.Oneofthemostimportantoftheseisiron.Modernindustryneedsconsiderablequantitiesofthismetal,eitherintheformofironorintheformofsteel.1.1.1IronandSteelAcertainnumberofnon-ferrousmetals,includingaluminumandzinc,arealsoimportant,buteventodaythemajorityofourengineeringproductsareofironorsteel.Moreover,ironpossessesmagneticproperties,whichhavemadethedevelopmentofelectricalpowerpossible.1.1.1IronandSteelTheironorewhichwefindonearthisnotpure.Itcontainssomeimpuritiesthatmustberemovedbysmelting.Theprocessofsmeltingconsistsofheatingtheoreinablastfurnacewithcokeandlimestone,andreducingittometal.Blastsofhotairenterthefurnacefromthebottomandprovidetheoxygenthatisnecessaryforthereductionoftheore.1.1.1IronandSteelTheorebecomesmolten,anditsoxidescombinewithcarbonfromthecoke.Thenon-metallicconstituentsoftheorecombinewiththelimestonetoformaliquidslag.Thisfloatsontopofthemolteniron,andpassedoutofthefurnacethroughatap.Themetalwhichremainsispigiron.1.1.1IronandSteelWecanmeltthisdownagaininanotherfurnace-acupola-withmorecokeandlimestone,andtapitoutintoaladleordirectlyintomolds.Thisiscastiron.Castirondoesnothavethestrengthofsteel.Itisbrittleandmayfractureundertension.1.1.1IronandSteelButitpossessescertainpropertiesthatmakeitveryusefulinthemanufactureofmachinery.Inthemoltenstateitisveryfluid,therefore,itiseasytocastitintointricateshapes.Alsoitiseasytomachineit.Castironcontainssmallproportionofothersubstances.1.1.1IronandSteelThesenon-metallicconstituentsofcastironincludecarbon,siliconandsulphur,andthepresenceofthesesubstancesaffectsthebehaviorofthemetal.Ironwhichcontainsanegligiblequantityofcarbon,forexample,wroughtironbehavesdifferentlyfromironwhichcontainsalotofcarbon.1.1.1IronandSteelThecarbonincastironispresentpartlyasfreegraphiteandpartlyasachemicalcombinationofironandcarbonwhichiscalledcementite.Thisisaveryhardsubstance,anditmakestheironhardtoo.1.1.1IronandSteelHowever,ironcanonlyholdabout1.5%ofcementite.Anycarboncontentabovethatpercentageispresentoftheformofaflakygraphite.1.1.1IronandSteelSteelcontainsnofreegraphite,anditscarboncontentrangesfromalmostnothingto1.5%.Wemakewireandtubingfrommildsteelwithaverylowcarboncontent,anddrillsandcuttingtoolsfromhighcarbonsteel.questionsHowisthesteelmade?Ifyouwanttohaveahighstrengthironbasedmaterial,whatshouldyoudo?Whatisthefunctionofthecokewhenproducingpigiron?Whatisthedifferencebetweenthepigironandthecastiron?1.1.2CarbonandlowalloysteelThemajorityofferrousalloysbelongstothiscategory.Thereasonsforthisarestraightforward.Theyaremoderatelypricedduetotheabsenceoflargeamountsofalloyingelements,andtheyaresufficientlyductiletobereadilyformed.Thefinalproductisstronganddurable.Theseeminentlypracticalmaterialsfindapplicationfromballbearingstometalsheetformedintoautomobilebodies.Forexample,the10XX,11XX,12XX,15XXetc.(AISIstandards,inwhichthefirsttwonumbersgiveacodedesignatingthetypeofalloyadditionsandthelasttwoorthreenumbersgivethecarboncontentinhundredthsofaweightpercent).1.1.2CarbonandLowSteelAsanexample,theplaincarbonsteelwith0.40wcarbonisa1040steel,whereasasteelwith1.45wCrand1.5wcarbonisa52150steel.1.1.2CarbonandLowSteelOneshouldkeepinmindthatchemicalcompositionsquotedinalloydesignationsareapproximateandwillvaryslightlyfromproducttoproductwithinacceptablelimitsofindustrialqualitycontrol.1.1.2CarbonandLowSteelAninterestingclassofalloysknownashighstrengthlowalloy(HSLA)steelshasemergedinresponsetorequirementsforweightreductionofvehicles.1.1.2CarbonandLowSteelThecompositionsofmanycommercialHSLAsteelsareproprietaryandspecifiedbymechanicalpropertiesratherthancomposition.Butatypicalexamplemightcontain0.2wcarbonandabout1.0worlessofsuchelementsasMn,P,Si,Cr,Ni,orMo.1.1.2CarbonandLowSteel1.1.2CarbonandLowSteelThehighstrengthofHSLAsteelsistheresultofoptimalalloyselectionandcarefullycontrolledprocessingsuchashotrolling(deformationattemperaturessufficientlyelevatedtoallowsomestressrelief)questionWhatisthedifferencebetweenthecarbonsteelandHSLAsteel?WhytheHSLAsteelissopopular?HowarethegoodpropertiesoftheHSLAsteelsobtained?vocabularyDuctile延展Durable耐久的Quote引用援引Eminently杰出地Rust生銹Precipitation沉淀沉積Dislocation位錯(cuò)1.1.3HighAlloySteelAsmentionedabove,alloyadditionsmustbewithcareandjustificationbecausetheyareexpensive.Weshallnowlookatthreecasesinwhichengineeringdesignrequirementsjustifyhighalloycomposition(i.e.,totalnon-carbonadditionsgreaterthan5w).1.1.3HighAlloySteelStainlesssteelsrequirealloyadditionstopreventdamagefromacorrosiveatmosphere.Toolsteelsrequirealloyadditionstoobtainsufficienthardnessformachiningapplication..1.1.3HighAlloySteelSoitiscalled“superalloys”whichrequirealloyadditionstoprovidestabilityinhightemperatureapplicationssuchasturbineblades.1.1.3HighAlloySteelStainlesssteelsaremoreresistanttorustingandstainingthancarbonandlowalloysteels,dueprimarilytothepresenceofchromiumaddition.1.1.3HighAlloySteelTheamountofchromiumisatleast4wandusuallyabove10w.Levelsashighas30wCraresometimesused.Theausteniticstainlesssteelshavetheaustenitestructureretainedatroomtemperature.1.1.3HighAlloySteelTheaustenitehasthefccstructureandisstableabove910℃.Thisstructurecanoccuratroomtemperaturewhenitisstabilizedbyanappropriatealloyadditionsuchasnickel.1.1.3HighAlloySteelWithoutthehighnickelcontent,thebccstructureisstable,asseenintheferriticstainlesssteels.Formanyapplicationsnotrequiringthehighcorrosionresistanceofausteniticstainlesssteels,theseloweralloy(andlessexpensive)ferriticstainlesssteelsarequiteserviceable.1.1.3HighAlloySteelArapidquenchheattreatmentdiscussedlaterallowstheformationofamorecomplexbodycenteredtetragonalcrystalstructurecalledmartensite.Thiscrystalstructureyieldshighstrengthandlowductility.1.1.3HighAlloySteelAsaresult,thesemartensiticstainlesssteelsareexcellentforapplicationssuchascutleryandsprings.Precipitationhardeningisanotherheattreatment.1.1.3HighAlloySteelEssentially,itinvolvesproducingamultiphasemicrostructurefromasinglephaseone.Theresultisincreasedresistancetodislocationmotionand,thereby,greaterstrengthorhardness.Precipitationhardeningstainlesssteelscanbefoundinapplicationssuchascorrosionresistantstructuralmembers.1.1.3HighAlloySteelToolsteelsareusedforcutting,formingorotherwiseshapinganothermaterial.Plaincarbonsteelcanalsobetoolsteel.Forshapingoperationsthatarenottoodemanding,suchamaterialisadequate.1.1.3HighAlloySteelInfact,toolsteelswerehistoricallyoftheplaincarbonvarietyuntilthemid-nineteenthcentury.Nowhighalloyadditionsarecommon.Theiradvantageisthattheycanprovidethenecessaryhardnesswithsimpleheattreatmentsandretainthathardnessathigheroperatingtemperature.1.1.3HighAlloySteelTheprimaryalloyingelementsusedinthesematerialsaretungsten,molybdenum,andchromium.1.1.3HighAlloySteelThetermsuperalloysreferstoabroadclassofmetalwithespeciallyhighstrengthatelevatedtemperatures(evenabove1000℃).Manystainlesssteelsserveadualroleasheatresistantalloys.Exceptironbasedsuperalloys,therearealsocobaltandnickelbasedalloys.1.1.3HighAlloySteelMostsuperalloyscontainchromiumadditionsforoxidationandcorrosionresistance.Thesematerialsareexpensiveand,insomecases,extremelyso.Buttheincreasinglysevererequirementsofmoderntechnologyarejustifyingsuchcosts.1.1.3HighAlloySteelBetween1950and1980,theuseofsuperalloysinaircraftturbojetenginesrosefrom10%to50%byweight.Atthispoint,ourdiscussionofsteelshastakenusintocloselyrelatedtonon-ferrousalloys.1.1.3HighAlloySteelBeforegoingontothegeneralareaofallothernon-ferrousalloys,wemustdiscussthetraditionalandimportantferroussystem,thecastirons.questionsGenerallyspeaking,whatistheroleoftheelementssuchaschromium,nickelandtungsteninthehighalloysteel?Whatisthemainpropertyofthesuperalloysteel?Byaddingwhatelementsintosteelcanweobtainausteniteatroomtemperature?1.1.4CastironsAsstatedearlier,wedefinecastironsastheferrousalloyswithgreaterthan2wcarbon.Theyalsogenerallycontainupto3wsiliconforcontrolofcarbideformationkinetics.1.1.4CastironsCastironshaverelativelylowmeltingtemperaturesandliquidphaseviscosities,donotformundesirablesurfacefilmswhenpoured,andundergomoderateshrinkageduringsolidificationandcooling.1.1.4CastironsThecastironsmustbalancegoodformabilityofcomplexshapesagainstinferiormechanicalpropertiescomparedtowroughtalloys.Acastironisformedintoafinalshapebypouringmoltenmetalintoamold.Theshapeofthemoldisretainedbythesolidifiedmetal.Inferiormechanicalpropertiesresultfromalessuniformmicrostructure,includingsomeporosity.

1.1.4CastironsWroughtalloysareinitiallycastbutarerolledorforgedintofinal,relativelysimpleshapes(infact,“wrought”simplymeans“worked”)1.1.4CastironsTherearefourgeneraltypesofcastirons.Whiteironhasacharacteristicwhite,crystallinefracturesurface.LargeamountsofFe3Careformedduringcasting,givingahard,brittlematerial.1.1.4CastironsGrayironhasagrayfracturesurfacewithafinelyfacetedstructure.Asignificantsiliconcontent(2wto3w)promotesgraphite(C)precipitationratherthancementite(Fe3C).1.1.4CastironsThesharp,pointedgraphiteflakescontributetocharacteristicbrittlenessingrayiron.Byaddingasmallamount(0.05w)ofmagnesiumtothemoltenmetalofthegrayironcomposition,spheroidalgraphiteprecipitatesratherthanflakesareproduced.1.1.4CastironsThisresultingductileironderivesitsnamefromtheimprovedmechanicalproperties.Ductilityisincreasedbyafactorof20,andstrengthisdoubled.1.1.4CastironsAmoretraditionalformofcastironwithreasonableductilityismalleableiron,whichisfirstcastaswhiteironandthenheattreatedtoproducenodulargraphiteprecipitates.1.1.4CastironsThename“castiron”derivesfromthefactthatthereisonlyironincastirons(T/F)Howismalleablecastironobtained?Whatisthefunctionoftheelementofmagnesiumwhenitisaddedintothecastiron?questions1.2HeatTreatmentofSteelWecanalterthecharacteristicsofsteelinvariousways.Inthefirstplace,steelwhichcontainsverylittlecarbonwillbemilderthansteelwhichcontainsahigherpercentageofcarbon,uptothelimitofabout1.5%.1.2HeatTreatmentofSteelSecondly,wecanheatthesteelaboveacertaincriticaltemperature,andthenallowittocoolatdifferentrates,Atthiscriticaltemperature,changesbegintotakeplaceinthemolecularstructureofthemetal.1.2HeatTreatmentofSteelIntheprocessknownasannealing,weheatthesteelabovethecriticaltemperatureandpermitittocoolveryslowly.Thiscausesthemetalsofterthanbefore,andmucheasiertobemachined.1.2HeatTreatmentofSteelAnnealinghasasecondadvantage,ithelpstorelieveanyinternalstresseswhichexistinthemetal.Thesestressesareliabletooccurthroughharmmeringorworkingthemetal,orthroughrapidcooling.1.2HeatTreatmentofSteelMetalwhichwecausetocoolrapidlycontractsmorerapidlyontheoutsidethanontheinside.Thisproducesunequalcontractions,whichmaygiverisetodistortionorcracking.Metalwhichcoolsslowlyislessliabletohavetheseinternalstressesthanmetalwhichcoolsquickly.1.2HeatTreatmentofSteelOntheotherhand,wecanmakesteelharderbyrapidcooling.Weheatitupbeyondthecriticaltemperature,andthenquenchitinwaterorsomeotherliquid.1.2HeatTreatmentofSteelTherapidtemperaturedropfixesthestructuralchangeinthesteelandthishardenedsteelismoreliabletofracturethannormalsteel.Wethereforeheatitagaintoatemperaturebelowthecriticaltemperature,andcoolitslowly.Thistreatmentiscalledtempering1.2HeatTreatmentofSteel.Ithelpstorelievetheinternalstresses,andmakesthesteellessbrittlethanbefore.Thepropertiesoftemperedsteelenableustouseitinthemanufactureoftoolswhichneedafairlyhardsteel.Highcarbonsteelisharderthantemperedsteel,butitismuchmoredifficulttowork.1.2HeatTreatmentofSteelTheseheattreatmentstakeplaceduringthevariousshapingoperations.Wecanobtainbarsandsheetsofsteelbyrollingthemetalthroughhugerollsinarollingmill.Therollpressuresmustbegreaterforcoldrollingthanforhotrolling,butcoldrollingenablestheoperatorstoproducerollsofgreataccuracyanduniformity,andwithabettersurfacefinish.1.2HeatTreatmentofSteelOthershapingoperationsincludedrawingintowire,castinginmolds,andforging.questionsIfaworkpiecemadeofsteelistoohardtowork,whatwouldyoudo?Generallyspeaking,whatkindofsteelissofter,andwhatkindisharder?Ifyouwantapieceofsteeltobeharderorsofter,whatwouldyoudo?1.3PrincipleofHeatTreatmentofSteelTheoreticalstudyofheattreatmentsteelwasinitiatedbythediscoveryofthecriticalpointsinsteelmadebyD.K.Chernovin1868.Chernov’sassumptionthatthepropertiesofsteelsaredeterminedbythestructureandthatthelatterdependsontheheatingtemperatureandrateofcoolinghasbeengenerallyrecognized.1.3PrincipleofHeatTreatmentofSteelDuringthedecadeswhichfollowedtheresearcherswereengagedinestablishingtherelationshipsbetweenthestructureandconditionsofitsformation(mainlytheheatingtemperatureandcoolingrate)1.3PrincipleofHeatTreatmentofSteelTheprincipalachievementsinthetheoryofheattreatmentwere,however,madein1920’sand1930’s.1.3PrincipleofHeatTreatmentofSteelMetallurgistshavegraduallycometotheconclusionthatthetypeofstructure(itstexture,properties,etc.)isdeterminedbythetemperatureofitsformation.1.3PrincipleofHeatTreatmentofSteelIthasbecomeclearthattheprocessesoccuringinheattreatmentcanbeexplainedbystudyingthekineticsoftransformationsatvarioustemperaturesandthefactorsaffectingthekinetics.1.3PrincipleofHeatTreatmentofSteelTheseconceptsformedthebasisofextensiveexperimentalworkundertakenbyS.S.Steinbergandcoworkersin1930~1940.Theycollectedavastexperimentalmaterialwhichhasconstitutedthebasisofthemodernconceptsontransformationsinsteelandthetheoryofheattreatmentofsteel.1.3PrincipleofHeatTreatmentofSteelStudiesinthesamedirectionwerestartedbymanyresearchersinothercountriesatthesametimeorsomewhatlater.Amongthepioneersinthisfield,thenamesofR.F.MehlandE.C.Bain(USA),andF.Wever,H.Esser,and

H.Hannemann(Germany)shouldbementionedfirst;1.3PrincipleofHeatTreatmentofSteeltheycarriedoutnumerousanddetailedstudiesintothekineticsoftransformationsinvarioussteels.ThenatureofhardenedsteelcouldonlybeexaminedbyusingXraysandothermethodsofphysicalanalysisofmetals(electronmicroscopy,internalfriction,etc)1.3PrincipleofHeatTreatmentofSteelNumerousworksofG.V.Kurdymovandhisfollowers,anumberofotherforeignmetallophysicistshaverevealedimportantpeculiaritiesinthefinestructureofsteel.1.3PrincipleofHeatTreatmentofSteelthetheoryofheattreatmentofsteelisunderstoodastheanalysisoftheprocessesofstructureformation(ontransformations)andtheparticularitiesofstructuralstateofalloys(innon-equilibrium).1.3PrincipleofHeatTreatmentofSteelHerethetheoryofheattreatmentofsteel,basedonthegeneraltheoryofphasetransformationsinundercooledsystemswillbediscussed.questionsWhoisthefirstmetallurgistwhosuggestedthatthepropertiesofsteelweredeterminedbythestructure?Whataretheimportantfactorsaffectingthestructureofsteelduringheattreatmentprocess?1.4Non-ferrousAlloysAlthoughferrousalloysareusedinthemajorityofmetallicapplicationsincurrentengineeringdesigns,non-ferrousalloysplayalargeandindispensableroleinourtechnology.SurfacecoatingSurfacecoatingaremixturesoffilmformingmaterialspluspigment,solvents,andotheradditives,which,whenappliedtoasurfaceandcuredordried,yieldathinfilmthatisfunctionalandoftendecorative.Theyincludepaints,dryingoilsandvarnishes,syntheticclearcoatings,andotherproductswhoseprimaryfunctionistoprotectthesurfaceofanobjectfromtheenvironment.Theseproductscanalsoenhancetheaestheticappealofanobjectbyaccentuatingitssurfacefeaturesorevenbyconcealingthemfromview.Mostsurfacecoatingsemployedinindustryandbyconsumersarebasedonsyntheticpolymers-thatis,industriallyproducedsubstancescomposedofextremelylarge,ofteninterconnectedmoleculesthatformtough,flexible,adhesivefilmswhenappliedtosurfaces.Theothercomponentmaterialsofsurfacecoatingarepigments,whichprovidecolour,opacity,gloss,andotherproperties;solventsorcarrierliquids,whichprovidealiquidmediumforapplyingthefilmformingingredients;andadditives,whichprovideanumberofspecialproperties.1.4Non-ferrousAlloysAsforferrousalloys,thelistofnon-ferrousalloysis,ofcourse,longandcomplex.Weshallbrieflylistthemajorfamiliesofnon-ferrousalloysandtheirkeyattributes.1.4Non-ferrousAlloysAluminumalloysarebestknownforlowdensityandcorrosionresistance.Electricalconductivity,easeoffabrication,andappearancearealsoattractivefeatures.1.4Non-ferrousAlloysBecauseofthese,theworldproductionofaluminumroughlydoubledinonerecent10yearperiod.Orereservesforaluminumarelarge(representing8%oftheerath’scrust)andaluminumcanbeeasilyrecycled.1.4Non-ferrousAlloysMagnesiumalloyshaveevenlowerdensitythanaluminumand,asaresult,appearinnumerousstructuralapplicationssuchasaerospacedesigns.1.4Non-ferrousAlloysAluminumisafccmaterialandthereforehasnumerousslipsystems,leadingtogoodductility.Bycontrast,magnesiumishcpwithonlythreeslipsystemsandcharacteristicbrittleness.1.4Non-ferrousAlloysTitaniumalloyshavebecomewidelyusedsinceWorldWarⅡ.Beforethattime,apracticalmethodofseparatingtitaniummetalfromreactiveoxidesandnitrideswasnotavailable.1.4Non-ferrousAlloysOnceformed,titanium’sreactivityworkstoitsadvantage.Athin,tenaciousoxidecoatingformsonitssurface,givingexcellentresistancetocorrosion.This“passivation”willbediscussedindetaillater.Titaniumalloys,likeAlorMg,areoflowerdensitythaniron.1.4Non-ferrousAlloysAlthoughmoredensethanAlorMg,titaniumalloyshaveadistinctadvantageofretainingstrengthatmoderateservicetemperatures,leadingtonumerousaerospacedesignapplications.1.4Non-ferrousAlloysTitaniumsharesthehcpstructurewithmagnesiumleadingtocharacteristicallylowductility.However,ahightemperaturebccstructurecanbestabilizedatroomtemperaturebycertainalloyadditionssuchasvanadium.1.4Non-ferrousAlloysCopperalloyspossessanumberofsuperiorproperties.Theirexcellentelectricalconductivitymakescopperalloystheleadingmaterialforelectricalwiring.Theirexcellentthermalconductivityleadstoapplicationsforradiatorsandheatexchangers.1.4Non-ferrousAlloysSuperiorcorrosionresistanceisexhibitedinmarineandothercorrosiveenvironments.Thefccstructurecontributestotheirgenerallyhighductilityandformability.Theircolorationisfrequentlyusedforarchitecturalappearance.1.4Non-ferrousAlloysWidespreadusesofcopperalloythroughhistoryhasledtoasomewhatconfusingcollectionofdescriptiveterms.Themechanicalpropertiesofthesealloysrivalthesteelsintheirvariability.1.4Non-ferrousAlloysHighpuritycopperisanexceptionallysoftmaterial.Theadditionof2wberylliumfollowedbyaheattreatmenttoproduceCuBeprecipitatesissufficienttopushthetensilestrengthbeyond1000MPa.1.4Non-ferrousAlloysNickelalloyshavemuchincommonwithcopperalloys.WehavealreadyusedtheCu-Nisystemastheclassicexampleofcompletesolidsolubility.MonelisthenamegiventocommercialalloyswithNi-Curatiosofroughly2:1byweight.1.4Non-ferrousAlloysThesearegoodexamplesofsolutionhardening.Nickelisharderthancopper,butMonelisharderthannickel.Nickelexhibitsexcellentcorrosionresistanceandhightemperaturestrength.1.4Non-ferrousAlloysZincalloysareideallysuitedfordiecastingduetotheirlowmeltingpointandlackofcorrosivereactionwithsteelcruciblesanddies.Automobilepartsandhardwarearetypicalstructuralapplications.Zinccoatingonferrousalloysreimportantmeansofcorrosionprotection.Thismethodistermedasgalvanization.1.4Non-ferrousAlloysLeadalloysaredurableandversatilematerials.TheleadpipesinstalledbytheRomansatthepublicbathsinBath,England,nearly2000yearsagoarestillinuse.Lead’shighdensityanddeformabilitycombinedwithalowmeltingpointaddstoitsversatility.1.4Non-ferrousAlloysLeadalloysfinduseinbatterygrids(alloyedwithcalciumorantimony),solders(alloyedwithtin),radiationshielding,andsoundcontrolstructures.Thetoxicityofleadrestrictsdesignapplicationsandthehandlingofitsalloys.1.4Non-ferrousAlloysTherefractorymetalsincludemolybdenum,niobium,tantalum,andtungsten.Theyare,evenmorethanthesuperalloys,especiallyresistanttohightemperatures.However,theirgeneralreactivitywithoxygenrequiresthehightemperatureservicetobeinacontrolledatmosphereorwithprotectivecoatings.1.4Non-ferrousAlloysThepreciousmetalsincludegold,iridium,osmium,palladium,platinum,rhodium,ruthenium,andsilver.Excellentcorrosionresistancecombinedwithvariousinherentpropertiesjustifythemanycostlyapplicationsofthesemetalsandalloys.1.4Non-ferrousAlloysGoldcircuitryintheelectronicsindustry,variousdentalalloys,andplatinumcoatingsforcatalyticconvertersareafewofthebetterknownexamples.questionsTherearealotofalloysinwhichthereisnoiron.(T/F)Tungstencanbearthetemperatureof2000℃inair.(T/F)Listtheapplicationsthatthecopperalloymayhave.1.5CompositesOnecategoryofstructuralengineeringmaterialsisthatofcomposites.Thesematerialsinvolvesomecombinationoftwoormorecomponentsfromthe“fundamental”materialtypes.1.5CompositesAkeyphilosophyinselectingcompositematerialsisthattheyprovidethe“bestofbothworlds,”thatis,attractivepropertiesfromeachcomponent.Aclassicexampleisfiberglass.1.5CompositesThestrengthofsmalldiameterglassfibersiscombinedwiththeductilityofthepolymericmatrix.Thecombinationofthesetwocomponentsprovidesaproductsuperiortoeithercomponentalone.1.5CompositesManycomposites,suchasfiberglass,involvecombinationsthatcrossovertheboundariesofdifferentkindsofmaterials.Others,suchasconcrete,involvedifferentcomponentfromwithinasinglematerialtype.1.5CompositesIngeneral,weshalluseafairlynarrowdefinitionofcomposites.Weshallconsideronlythosematerialsthatcombinedifferentcomponentsonthemicroscopic(ratherthanmacroscopic)scale.1.5CompositesWeshallnotincludemultiphasealloysandceramics,whicharetheresultofroutineprocessing.Similarly,themicrocircuitsbediscussedlate

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論