2024屆貴州省黔東南州凱里市第一中學(xué)數(shù)學(xué)高二上期末考試試題含解析_第1頁
2024屆貴州省黔東南州凱里市第一中學(xué)數(shù)學(xué)高二上期末考試試題含解析_第2頁
2024屆貴州省黔東南州凱里市第一中學(xué)數(shù)學(xué)高二上期末考試試題含解析_第3頁
2024屆貴州省黔東南州凱里市第一中學(xué)數(shù)學(xué)高二上期末考試試題含解析_第4頁
2024屆貴州省黔東南州凱里市第一中學(xué)數(shù)學(xué)高二上期末考試試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆貴州省黔東南州凱里市第一中學(xué)數(shù)學(xué)高二上期末考試試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.,,,,設(shè),則下列判斷中正確的是()A. B.C. D.2.直線的傾斜角的大小為()A. B.C. D.3.《萊茵德紙草書》(RhindPapyrus)是世界上最古老的數(shù)學(xué)著作之一.書中有這樣一道題目:把93個面包分給5個人,使每個人所得面包個數(shù)成等比數(shù)列,且使較小的兩份之和等于中間一份的四分之三,則最大的一份是()個A.12 B.24C.36 D.484.【山東省濰坊市二?!恳阎p曲線的離心率為,其左焦點(diǎn)為,則雙曲線的方程為()A. B.C. D.5.若平面的一個法向量為,點(diǎn),,,,到平面的距離為()A.1 B.2C.3 D.46.程大位是明代著名數(shù)學(xué)家,他的《新編直指算法統(tǒng)宗》是中國歷史上一部影響巨大的著作.它問世后不久便風(fēng)行宇內(nèi),成為明清之際研習(xí)數(shù)學(xué)者必讀的教材,而且傳到朝鮮、日本及東南亞地區(qū),對推動漢字文化圈的數(shù)學(xué)發(fā)展起了重要的作用.卷八中第33問是:“今有三角果一垛,底闊每面七個.問該若干?”如圖是解決該問題的程序框圖.執(zhí)行該程序框圖,求得該垛果子的總數(shù)為()A.120 B.84C.56 D.287.已知點(diǎn),動點(diǎn)P滿足,則點(diǎn)P的軌跡為()A橢圓 B.雙曲線C.拋物線 D.圓8.丹麥數(shù)學(xué)家琴生(Jensen)是世紀(jì)對數(shù)學(xué)分析做出卓越貢獻(xiàn)的巨人,特別是在函數(shù)的凸凹性與不等式方面留下了很多寶貴的成果.設(shè)函數(shù)在上的導(dǎo)函數(shù)為,在上的導(dǎo)函數(shù)為,在上恒成立,則稱函數(shù)在上為“凹函數(shù)”.則下列函數(shù)在上是“凹函數(shù)”的是()A. B.C. D.9.若函數(shù)在區(qū)間單調(diào)遞增,則的取值范圍是()A. B.C. D.10.用反證法證明“若a,b∈R,,則a,b不全為0”時,假設(shè)正確的是()A.a,b中只有一個為0 B.a,b至少一個不為0C.a,b至少有一個為0 D.a,b全為011.已知雙曲線的一條漸近線方程為,它的焦距為2,則雙曲線的方程為()A B.C. D.12.已知,,則在上的投影向量為()A.1 B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.橢圓上一點(diǎn)到兩個焦點(diǎn)的距離之和等于,則的標(biāo)準(zhǔn)方程為______.14.已知是雙曲線的左、右焦點(diǎn),若為雙曲線上一點(diǎn),且,則__________.15.已知函數(shù)的圖象上有一點(diǎn),則曲線在點(diǎn)處的切線方程為______.16.已知,,,,使得成立,則實(shí)數(shù)a的取值范圍是___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知圓C的圓心在坐標(biāo)原點(diǎn),且過點(diǎn)M()(1)求圓C的方程;(2)已知點(diǎn)P是圓C上的動點(diǎn),試求點(diǎn)P到直線的距離的最小值;18.(12分)已知拋物線過點(diǎn),是拋物線的焦點(diǎn),直線交拋物線于另一點(diǎn),為坐標(biāo)原點(diǎn).(1)求拋物線的方程和焦點(diǎn)的坐標(biāo);(2)拋物線的準(zhǔn)線上是否存在點(diǎn)使,若存在請求出點(diǎn)坐標(biāo),若不存在請說明理由.19.(12分)如圖1,四邊形為直角梯形,,,,,為上一點(diǎn),為的中點(diǎn),且,,現(xiàn)將梯形沿折疊(如圖2),使平面平面.(1)求證:平面平面.(2)能否在邊上找到一點(diǎn)(端點(diǎn)除外)使平面與平面所成角的余弦值為?若存在,試確定點(diǎn)的位置,若不存在,請說明理由.20.(12分)《中華人民共和國道路交通安全法》第47條的相關(guān)規(guī)定:機(jī)動車行經(jīng)人行橫道時,應(yīng)當(dāng)減速慢行;遇行人正在通過人行橫道,應(yīng)當(dāng)停車讓行,俗稱“禮讓斑馬線”,其中第90條規(guī)定:對不禮讓行人的駕駛員處以扣3分,罰款50元的處罰.下表是某市一主干路口監(jiān)控設(shè)備所抓拍的5個月內(nèi)駕駛員不“禮讓斑馬線”行為統(tǒng)計(jì)數(shù)據(jù):參考公式:,月份12345違章駕駛員人數(shù)1201051009580(1)請利用所給數(shù)據(jù)求違章人數(shù)y與月份x之間的回歸直線方程;(2)預(yù)測該路口10月份的不“禮讓斑馬線”違章駕駛員人數(shù);21.(12分)已知橢圓的左、右焦點(diǎn)分別是,點(diǎn)P是橢圓C上任一點(diǎn),若面積的最大值為,且離心率(1)求C的方程;(2)A,B為C的左、右頂點(diǎn),若過點(diǎn)且斜率不為0的直線交C于M,N兩點(diǎn),證明:直線與的交點(diǎn)在一條定直線上22.(10分)如圖,在幾何體中,底面是邊長為2的正三角形,平面,,且是的中點(diǎn).(1)求證:平面;(2)求二面角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】通過湊配構(gòu)造的方式,構(gòu)造出新式子,且可以化簡為整數(shù),然后利用放縮思想得到S的范圍.【詳解】解:,,,,,;,.故選:D2、B【解析】由直線方程,可知直線的斜率,設(shè)直線的傾斜角為,則,又,所以,故選3、D【解析】設(shè)等比數(shù)列的首項(xiàng)為,公比,根據(jù)題意,由求解.【詳解】設(shè)等比數(shù)列的首項(xiàng)為,公比,由題意得:,即,解得,所以,故選:D4、D【解析】分析:根據(jù)題設(shè)條件,列出方程,求出,,的值,即可求得雙曲線得標(biāo)準(zhǔn)方程詳解:∵雙曲線的離心率為,其左焦點(diǎn)為∴,∴∵∴∴雙曲線的標(biāo)準(zhǔn)方程為故選D.點(diǎn)睛:本題考查雙曲線的標(biāo)準(zhǔn)方程,雙曲線的簡單性質(zhì)的應(yīng)用,根據(jù)題設(shè)條件求出,,的值是解決本題的關(guān)鍵.5、B【解析】求出,點(diǎn)A到平面的距離:,由此能求出結(jié)果【詳解】解:,,,,∴為平面的一條斜線,且∴點(diǎn)到平面的距離:故選:B.6、B【解析】按照框圖中程序,逐步執(zhí)行循環(huán),即可求得答案.【詳解】第一次循環(huán):,,第二次循環(huán):,,第三次循環(huán):,,第四次循環(huán):,,第五次循環(huán):,,第六次循環(huán):,,第七次循環(huán):,,退出循環(huán),輸出.故選:B7、A【解析】根據(jù)橢圓的定義即可求解.【詳解】解:,故,又,根據(jù)橢圓的定義可知:P的軌跡為橢圓.故選:A.8、B【解析】根據(jù)“凹函數(shù)”的定義逐項(xiàng)驗(yàn)證即可解出【詳解】對A,,當(dāng)時,,所以A錯誤;對B,,在上恒成立,所以B正確;對C,,,所以C錯誤;對D,,,因?yàn)?,所以D錯誤故選:B9、A【解析】函數(shù)在區(qū)間上單調(diào)遞增,轉(zhuǎn)化為導(dǎo)函數(shù)在該區(qū)間上大于等于0恒成立,進(jìn)而求出結(jié)果.【詳解】由題意得:在區(qū)間上恒成立,而,所以.故選:A10、D【解析】把要證的結(jié)論否定之后,即得所求的反設(shè)【詳解】由于“a,b不全為0”的否定為:“a,b全為0”,所以假設(shè)正確的是a,b全為0.故選:D11、B【解析】根據(jù)雙曲線的一條漸近線方程為,可得,再結(jié)合焦距為2和,求得,即可得解.【詳解】解:因?yàn)殡p曲線的一條漸近線方程為,所以,即,又因焦距為2,即,即,因?yàn)?,所以,所以,所以雙曲線的方程為.故選:B.12、C【解析】根據(jù)題意得,進(jìn)而根據(jù)投影向量的概念求解即可.【詳解】解:因?yàn)?,,所以,所以,所以在上的投影向量為故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)橢圓定義求出其長半軸長,再結(jié)合焦點(diǎn)坐標(biāo)即可計(jì)算作答.【詳解】因橢圓上一點(diǎn)到兩個焦點(diǎn)的距離之和等于,則該橢圓長半軸長,而半焦距,于是得短半軸長b,有,所以的標(biāo)準(zhǔn)方程為.故答案為:14、17【解析】根據(jù)雙曲線的定義求解【詳解】由雙曲線方程知,,,又.,所以(1舍去)故答案為:1715、【解析】利用導(dǎo)數(shù)求得為增函數(shù),根據(jù),求得,進(jìn)而求得,得出即在點(diǎn)處的切線的斜率,再利用直線的點(diǎn)斜式方程,即可求解【詳解】由題意,點(diǎn)在曲線上,可得,又由函數(shù),則,所以函數(shù)在上為增函數(shù),且,所以,因?yàn)?,所以,即在點(diǎn)處的切線的斜率為2,所以曲線在點(diǎn)的切線方程為,即.故答案為:【點(diǎn)睛】本題主要考查了利用導(dǎo)數(shù)求解曲線在某點(diǎn)處的切線方程,其中解答中熟記導(dǎo)數(shù)的幾何意義,以及導(dǎo)數(shù)的運(yùn)算公式,結(jié)合直線的點(diǎn)斜式方程是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力16、【解析】由題可得,求導(dǎo)可得的單調(diào)性,將的最小值代入,即得.【詳解】∵,,使得成立,∴由,得,當(dāng)時,,∴在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,∴函數(shù)在區(qū)間上的最小值為又在上單調(diào)遞增,∴函數(shù)在區(qū)間上的最小值為,∴,即實(shí)數(shù)的取值范圍是故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)由圓C的圓心在坐標(biāo)原點(diǎn),且過點(diǎn),求得圓的半徑,利用圓的標(biāo)準(zhǔn)方程,即可求解;(2)由點(diǎn)到直線的距離公式,求得圓心到直線l的距離為,進(jìn)而得到點(diǎn)P到直線的距離的最小值為,得出答案.【詳解】(1)由題意,圓C的圓心在坐標(biāo)原點(diǎn),且過點(diǎn),所以圓C的半徑為,所以圓C的方程為.(2)由題意,圓心到直線l的距離為,所以P到直線的距離的最小值為.【點(diǎn)睛】本題主要考查了圓標(biāo)準(zhǔn)方程的求解,以及直線與圓的位置關(guān)系的應(yīng)用,其中解答中熟練應(yīng)用直線與圓的位置關(guān)系合理轉(zhuǎn)化是解答的關(guān)鍵,著重考查了轉(zhuǎn)化思想,以及推理與計(jì)算能力,屬于基礎(chǔ)題.18、(1)拋物線的方程為,焦點(diǎn)坐標(biāo)為(2)存在,且【解析】(1)根據(jù)點(diǎn)坐標(biāo)求得,進(jìn)而求得拋物線的方程和焦點(diǎn)的坐標(biāo).(2)設(shè),根據(jù)列方程,化簡求得的坐標(biāo).【小問1詳解】將代入得,所以拋物線的方程為,焦點(diǎn)坐標(biāo)為.【小問2詳解】存在,理由如下:直線的方程為,或,即.拋物線的準(zhǔn)線,設(shè),,即,所以.即存在點(diǎn)使.19、(1)證明見解析.(2)存在點(diǎn),為線段中點(diǎn)【解析】(1)根據(jù)線面垂直的判定定理和面面垂直的判定定理,即可證得平面平面;(2)以為坐標(biāo)原點(diǎn)建立如圖所示的空間直角坐標(biāo)系,求得平面和平面的法向量,利用向量的夾角公式,即可求解.【詳解】(1)在直角梯形中,作于于,連接,則,,則,,則,在直角中,可得,則,所以,故,且折疊后與位置關(guān)系不變.又因?yàn)槠矫嫫矫?,且平面平面,所以平面,因?yàn)槠矫?,所以平面平?(2)在中,由,為的中點(diǎn),可得.又因?yàn)槠矫嫫矫?,且平面平面,所以平面,則以為坐標(biāo)原點(diǎn)建立如圖所示的空間直角坐標(biāo)系,則,,,則,,設(shè)平面的法向量為,則,令,可得平面的法向量為,假設(shè)存在點(diǎn)使平面與平面所成角的余弦值為,且(),∵,∴,故,又,∴,又由,設(shè)平面的法向量為,可得,令得,∴,解得,因此存在點(diǎn)且為線段中點(diǎn)時使平面與平面所成角的余弦值為.本題考查了面面垂直的判定與證明,以及空間角的求解及應(yīng)用,意在考查學(xué)生的空間想象能力和邏輯推理能力,解答中熟記線面位置關(guān)系的判定定理和性質(zhì)定理,通過嚴(yán)密推理是線面位置關(guān)系判定的關(guān)鍵,同時對于立體幾何中角的計(jì)算問題,往往可以利用空間向量法,通過求解平面的法向量,利用向量的夾角公式求解.20、(1);(2)37【解析】(1)將題干數(shù)據(jù)代入公式求出與,進(jìn)而求出回歸直線方程;(2)再第一問的基礎(chǔ)上代入求出結(jié)果.【小問1詳解】,,則,,所以回歸直線方程;【小問2詳解】令得:,故該路口10月份的不“禮讓斑馬線”違章駕駛員人數(shù)為37.21、(1);(2)證明見解析.【解析】(1)用待定系數(shù)法求出橢圓的方程;(2)設(shè)直線MN的方程為x=my+1,設(shè),用“設(shè)而不求法”表示出.由直線AM的方程為,直線BN的方程為,聯(lián)立,解得:,即可證明直線AM與BN的交點(diǎn)在直線上.【小問1詳解】由題意可得:,解得:,所以C的方程為.【小問2詳解】由(1)得A(-2,0),B(2,0),F2(1,0),設(shè)直線MN的方程為x=my+1.設(shè),由,消去y得:,所以.所以.因?yàn)橹本€AM的方程為,直線BN的方程為,二者聯(lián)立,有,所以,解得:,直線AM與BN的交點(diǎn)在直線上.【點(diǎn)睛】(1)待定系數(shù)法可以求二次曲線的標(biāo)準(zhǔn)方程;(2)"設(shè)而不求"是一種在解析幾何中常見的解題方法,可以解決直線與二

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論