2024屆貴州省銅仁市思南縣思南中學(xué)高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第1頁(yè)
2024屆貴州省銅仁市思南縣思南中學(xué)高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第2頁(yè)
2024屆貴州省銅仁市思南縣思南中學(xué)高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第3頁(yè)
2024屆貴州省銅仁市思南縣思南中學(xué)高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第4頁(yè)
2024屆貴州省銅仁市思南縣思南中學(xué)高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩12頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆貴州省銅仁市思南縣思南中學(xué)高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.知點(diǎn)分別為圓上的動(dòng).點(diǎn),為軸上一點(diǎn),則的最小值()A. B.C. D.2.已知f(x)是定義在R上的函數(shù),且f(2)=2,,則f(x)>x的解集是()A. B.C. D.3.對(duì)任意實(shí)數(shù),在以下命題中,正確的個(gè)數(shù)有()①若,則;②若,則;③若,則;④若,則A. B.C. D.4.已知各項(xiàng)都為正數(shù)的等比數(shù)列,其公比為q,前n項(xiàng)和為,滿足,且是與的等差中項(xiàng),則下列選項(xiàng)正確的是()A. B.C D.5.雙曲線:的一條漸近線與直線垂直,則它的離心率為()A. B.C. D.6.圓與圓的位置關(guān)系為()A.內(nèi)切 B.相交C.外切 D.相離7.拋物線的焦點(diǎn)到準(zhǔn)線的距離為()A. B.C. D.8.袋子中有四個(gè)小球,分別寫有“文、明、中、國(guó)”四個(gè)字,有放回地從中任取一個(gè)小球,直到“中”“國(guó)”兩個(gè)字都取到就停止,用隨機(jī)模擬的方法估計(jì)恰好在第三次停止的概率.利用電腦隨機(jī)產(chǎn)生0到3之間取整數(shù)值的隨機(jī)數(shù),分別用0,1,2,3代表“文、明、中、國(guó)”這四個(gè)字,以每三個(gè)隨機(jī)數(shù)為一組,表示取球三次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了以下18組隨機(jī)數(shù):由此可以估計(jì),恰好第三次就停止的概率為()A. B.C. D.9.雙曲線的焦點(diǎn)坐標(biāo)是()A. B.C. D.10.在拋物線上,橫坐標(biāo)為4的點(diǎn)到焦點(diǎn)的距離為5,則p的值為()A. B.2C.1 D.411.已知直線與圓交于A,B兩點(diǎn),O為原點(diǎn),且,則實(shí)數(shù)m等于()A. B.C. D.12.《米老鼠和唐老鴨》這部動(dòng)畫給我們的童年帶來了許多美好的回憶,令我們印象深刻.如圖所示,有人用3個(gè)圓構(gòu)成米奇的簡(jiǎn)筆畫形象.已知3個(gè)圓方程分別為:圓圓,圓若過原點(diǎn)的直線與圓、均相切,則截圓所得的弦長(zhǎng)為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線的漸近線方程為,,分別為C的左,右焦點(diǎn),若動(dòng)點(diǎn)P在C的右支上,則的最小值是______14.已知函數(shù),若在上是增函數(shù),則實(shí)數(shù)的取值范圍是________15.如圖,在三棱錐P–ABC的平面展開圖中,AC=1,,AB⊥AC,AB⊥AD,∠CAE=30°,則cos∠FCB=______________.16.下列是某廠1~4月份用水量(單位:百噸)的一組數(shù)據(jù),由其散點(diǎn)圖可知,用水量與月份之間有較好的線性相關(guān)關(guān)系,其線性回歸方程是,則_______.月份1234用水量4.5432.5三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知斜率為的直線與橢圓:交于,兩點(diǎn)(1)若線段的中點(diǎn)為,求的值;(2)若,求證:原點(diǎn)到直線的距離為定值18.(12分)在空間直角坐標(biāo)系Oxyz中,O為原點(diǎn),已知點(diǎn),,,設(shè)向量,.(1)求與夾角的余弦值;(2)若與互相垂直,求實(shí)數(shù)k的值.19.(12分)已知函數(shù).(1)判斷的單調(diào)性.(2)證明:.20.(12分)如圖,直角梯形AEFB與菱形ABCD所在平面互相垂直,,,,,,M為AD中點(diǎn).(1)證明:直線面DEF;(2)求二面角的余弦值.21.(12分)已知等差數(shù)列滿足,.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前n項(xiàng)和.22.(10分)已知數(shù)列{}的前n項(xiàng)和為,且2=3-3(n∈)(1)求數(shù)列{}的通項(xiàng)公式(2)若=(n+1),求數(shù)列{}的前n項(xiàng)和

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】求出圓關(guān)于軸的對(duì)稱圓的圓心坐標(biāo),以及半徑,然后求解圓與圓的圓心距減去兩個(gè)圓的半徑和,即可求出的最小值.【詳解】圓關(guān)于軸的對(duì)稱圓的圓心坐標(biāo),半徑為1,圓的圓心坐標(biāo)為,半徑為1,∴若與關(guān)于x軸對(duì)稱,則,即,當(dāng)三點(diǎn)不共線時(shí),當(dāng)三點(diǎn)共線時(shí),所以同理(當(dāng)且僅當(dāng)時(shí)取得等號(hào))所以當(dāng)三點(diǎn)共線時(shí),當(dāng)三點(diǎn)不共線時(shí),所以∴的最小值為圓與圓的圓心距減去兩個(gè)圓的半徑和,∴.故選:B.2、D【解析】構(gòu)造,結(jié)合已知有在R上遞增且,原不等式等價(jià)于,利用單調(diào)性求解集.【詳解】令,由題設(shè)知:,即在R上遞增,又,所以f(x)>x等價(jià)于,即.故選:D3、B【解析】直接利用不等式的基本性質(zhì)判斷.【詳解】①因?yàn)椋瑒t,根據(jù)不等式性質(zhì)得,故正確;②當(dāng)時(shí),,而,故錯(cuò)誤;③因?yàn)?,所以,即,故正確;④當(dāng)時(shí),,故錯(cuò)誤;故選:B4、D【解析】根據(jù)題意求得,即可判斷AB,再根據(jù)等比數(shù)列的通項(xiàng)公式即可判斷C;再根據(jù)等比數(shù)列前項(xiàng)和公式即可判斷D.【詳解】解:因?yàn)楦黜?xiàng)都為正數(shù)的等比數(shù)列,,所以,又因是與的等差中項(xiàng),所以,即,解得或(舍去),故B錯(cuò)誤;所以,故A錯(cuò)誤;所以,故C錯(cuò)誤;所以,故D正確.故選:D.5、A【解析】先利用直線的斜率判定一條漸近線與直線垂直,求出,再利用雙曲線的離心率公式和進(jìn)行求解.【詳解】因?yàn)橹本€的斜率為,所以雙曲線的一條漸近線與直線垂直,所以,即,則雙曲線的離心率.故選:A.卷II(非選擇題6、C【解析】寫出兩圓的圓心和半徑,求出圓心距,發(fā)現(xiàn)與兩圓的半徑和相等,所以判斷兩圓外切【詳解】圓的標(biāo)準(zhǔn)方程為:,所以圓心坐標(biāo)為,半徑;圓的圓心為,半徑,圓心距,所以兩圓相外切故選:C7、C【解析】根據(jù)拋物線方程求出焦點(diǎn)坐標(biāo)與準(zhǔn)線方程,即可得解;【詳解】解:因?yàn)閽佄锞€方程為,所以焦點(diǎn)坐標(biāo)為,準(zhǔn)線的方程為,所以焦點(diǎn)到準(zhǔn)線的距離為;故選:C8、A【解析】利用古典概型的概率公式求解.【詳解】因?yàn)殡S機(jī)模擬產(chǎn)生了以下18組隨機(jī)數(shù):,其中恰好第三次就停止包含的基本事件有:023,123,132共3個(gè),所以由此可以估計(jì),恰好第三次就停止的概率為,故選:A9、B【解析】根據(jù)雙曲線的方程,求得,結(jié)合雙曲線的幾何性質(zhì),即可求解.【詳解】由題意,雙曲線,可得,所以,且雙曲線的焦點(diǎn)再軸上,所以雙曲線的焦點(diǎn)坐標(biāo)為.故選:B.10、B【解析】由方程可得拋物線的焦點(diǎn)和準(zhǔn)線,進(jìn)而由拋物線的定義可得,解之可得值【詳解】解:由題意可得拋物線開口向右,焦點(diǎn)坐標(biāo),,準(zhǔn)線方程,由拋物線的定義可得拋物線上橫坐標(biāo)為4的點(diǎn)到準(zhǔn)線的距離等于5,即,解之可得.故選:B.11、A【解析】根據(jù)給定條件求出,再求出圓O到直線l的距離即可計(jì)算作答.【詳解】圓的圓心O,半徑,因,則,而,則,即是正三角形,點(diǎn)O到直線l的距離,因此,,解得,所以實(shí)數(shù)m等于.故選:A12、A【解析】設(shè)直線,利用直線與圓相切,求得斜率,再利用弦長(zhǎng)公式求弦長(zhǎng)【詳解】設(shè)過點(diǎn)的直線.由直線與圓、圓均相切,得解得(1).設(shè)點(diǎn)到直線的距離為則(2).又圓的半徑直線截圓所得弦長(zhǎng)結(jié)合(1)(2)兩式,解得二、填空題:本題共4小題,每小題5分,共20分。13、【解析】首先根據(jù)雙曲線的漸近線方程和焦點(diǎn)坐標(biāo),求出雙曲線的標(biāo)準(zhǔn)方程;設(shè),根據(jù)雙曲線的定義可知,從而利用基本不等式即可求出的最小值.【詳解】因?yàn)殡p曲線的漸近線方程為,焦點(diǎn)坐標(biāo)為,,所以,即,所以雙曲線方程為.設(shè),則,且,,當(dāng)且僅當(dāng),即時(shí)等號(hào)成立,所以的最小值是.故答案為:.14、【解析】根據(jù)函數(shù)在上是增函數(shù),分段函數(shù)在整個(gè)定義域內(nèi)單調(diào),則在每個(gè)函數(shù)內(nèi)單調(diào),注意銜接點(diǎn)的函數(shù)值.【詳解】解:因?yàn)楹瘮?shù)在上是增函數(shù),所以在區(qū)間上是增函數(shù)且在區(qū)間上也是增函數(shù),對(duì)于函數(shù)在上是增函數(shù),則;①對(duì)于函數(shù),(1)當(dāng)時(shí),,外函數(shù)為定義域內(nèi)的減函數(shù),內(nèi)函數(shù)在上是增函數(shù),根據(jù)復(fù)合函數(shù)“同增異減”可得時(shí)函數(shù)在區(qū)間上是減函數(shù),不符合題意,故舍去,(2)當(dāng)時(shí),外函數(shù)為定義域內(nèi)的增函數(shù),要使函數(shù)在區(qū)間上是增函數(shù),則內(nèi)函數(shù)在上也是增函數(shù),且對(duì)數(shù)函數(shù)真數(shù)大于0,即在上也要恒成立,所以,又,所以,②又在上是增函數(shù)則在銜接點(diǎn)處函數(shù)值應(yīng)滿足:,化簡(jiǎn)得,③由①②③得,,所以實(shí)數(shù)的取值范圍是.故答案為:.【點(diǎn)睛】方法點(diǎn)睛:利用單調(diào)性求參數(shù)方法如下:(1)依據(jù)函數(shù)的圖象或單調(diào)性定義,確定函數(shù)的單調(diào)區(qū)間,與已知單調(diào)區(qū)間比較;(2)需注意若函數(shù)在區(qū)間上是單調(diào)的,則該函數(shù)在此區(qū)間的任意子集上也是單調(diào)的;(3)分段函數(shù)的單調(diào)性,除注意各段的單調(diào)性外,還要注意銜接點(diǎn)的取值15、【解析】在中,利用余弦定理可求得,可得出,利用勾股定理計(jì)算出、,可得出,然后在中利用余弦定理可求得的值.【詳解】,,,由勾股定理得,同理得,,在中,,,,由余弦定理得,,在中,,,,由余弦定理得.故答案為:.【點(diǎn)睛】本題考查利用余弦定理解三角形,考查計(jì)算能力,屬于中等題.16、25【解析】根據(jù)表格數(shù)據(jù)求出,代入,即可求出.【詳解】解:由題意知:,,將代入線性回歸方程,即,解得:.故答案為:5.25.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析.【解析】(1)設(shè)出兩點(diǎn)的坐標(biāo),利用點(diǎn)差法即可求出的值;(2)設(shè)出直線的方程,與橢圓方程聯(lián)立,寫韋達(dá);根據(jù),求出,從而可證明原點(diǎn)到直線的距離為定值【小問1詳解】設(shè),則,,兩式相減,得,即,所以,即,又因?yàn)榫€段的中點(diǎn)為,所以,即;【小問2詳解】設(shè)斜率為的直線為,,由,得,所以,,因?yàn)?,所以,即,所以,所以,即,所以,原點(diǎn)到直線的距離為.所以原點(diǎn)到直線的距離為定值.18、(1)(2)【解析】(1)由向量的坐標(biāo)先求出,,,由向量的夾角公式可得答案.(2)由題意可得,從而求出參數(shù)的值【小問1詳解】由題,,,故,,,所以故與夾角余弦值為.【小問2詳解】由與的互相垂直知,,,即19、(1)在R上單調(diào)遞增,無單調(diào)遞減區(qū)間;(2)證明見解析.【解析】(1)對(duì)求導(dǎo),令并應(yīng)用導(dǎo)數(shù)求最值,確定的符號(hào),即可知的單調(diào)性.(2)利用作差法轉(zhuǎn)化證明的結(jié)論,令結(jié)合導(dǎo)數(shù)研究其單調(diào)性,最后討論的大小關(guān)系判斷的符號(hào)即可證結(jié)論.【小問1詳解】由題設(shè),.令,則.當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增故,即,則在R上單調(diào)遞增,無單調(diào)遞減區(qū)間.【小問2詳解】.令,則.令,則,顯然在R上單調(diào)遞增,且,∴當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增.故,即,在R上單調(diào)遞增,又,∴當(dāng)時(shí),,;當(dāng)時(shí),,;當(dāng)時(shí),.綜上,,即.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:第二問,應(yīng)用作差法有,構(gòu)造中間函數(shù)并應(yīng)用導(dǎo)數(shù)研究單調(diào)性,最后討論的大小證結(jié)論.20、(1)證明見解析(2)【解析】(1)由平面平面ABCD,可得平面ABCD,連接BD,可得,以為原點(diǎn),為軸,豎直向上為軸建立空間直角坐標(biāo)系,利用向量法計(jì)算與平面的法向量的數(shù)量積為0即可得證;(2)分別計(jì)算出平面和平面的法向量,然后利用向量夾角公式即可求解.【小問1詳解】證明:因?yàn)槠矫嫫矫鍭BCD,平面平面ABCD,且,所以平面ABCD,連接BD,則等邊三角形,所以,以為原點(diǎn),為軸,豎直向上為軸建立如圖所示的空間直角坐標(biāo)系,則,設(shè)為平面的法向量,因?yàn)?,則有,取,又因?yàn)?,所以,因?yàn)槠矫?,所以平面;【小?詳解】解:分別設(shè)為平面和平面的法向量,因?yàn)?,則有,取,因,則有,取,所以,由圖可知二面角為銳二面角,所以二面角的余弦值為.21、(1);

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論