2024屆黑龍江哈爾濱市第十九中學高二上數(shù)學期末監(jiān)測試題含解析_第1頁
2024屆黑龍江哈爾濱市第十九中學高二上數(shù)學期末監(jiān)測試題含解析_第2頁
2024屆黑龍江哈爾濱市第十九中學高二上數(shù)學期末監(jiān)測試題含解析_第3頁
2024屆黑龍江哈爾濱市第十九中學高二上數(shù)學期末監(jiān)測試題含解析_第4頁
2024屆黑龍江哈爾濱市第十九中學高二上數(shù)學期末監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2024屆黑龍江哈爾濱市第十九中學高二上數(shù)學期末監(jiān)測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,在平行六面體中,,則與向量相等的是()A. B.C. D.2.已知平面內(nèi)有一點,平面的一個法向量為,則下列四個點中在平面內(nèi)的是()A. B.C. D.3.現(xiàn)有一根金錘,長5尺,頭部1尺,重4斤,尾部1尺,重2斤,若該金錘從頭到尾,每一尺的重量構成等差數(shù)列,該金錘共重()斤A.6 B.7C.9 D.154.已知動點滿足,則動點的軌跡是()A.橢圓 B.直線C.線段 D.圓5.曲線在處的切線的斜率為()A.-1 B.1C.2 D.36.已知集合,則()A. B.C. D.7.已知函數(shù),若對任意的,,且,總有,則的取值范圍是()A B.C. D.8.空氣質(zhì)量指數(shù)大小分為五級指數(shù)越大說明污染的情況越嚴重,對人體危害越大,指數(shù)范圍在:,,,,分別對應“優(yōu)”、“良”、“輕中度污染”、“中度重污染”、“重污染”五個等級,如圖是某市連續(xù)14天的空氣質(zhì)量指數(shù)趨勢圖,下面說法錯誤的是().A.這14天中有4天空氣質(zhì)量指數(shù)為“良”B.從2日到5日空氣質(zhì)量越來越差C.這14天中空氣質(zhì)量的中位數(shù)是103D.連續(xù)三天中空氣質(zhì)量指數(shù)方差最小是9日到11日9.已知數(shù)列為等比數(shù)列,若,則的值為()A.-4 B.4C.-2 D.210.為了更好地研究雙曲線,某校高二年級的一位數(shù)學老師制作了一個如圖所示的雙曲線模型.已知該模型左、右兩側的兩段曲線(曲線與曲線)為某雙曲線(離心率為2)的一部分,曲線與曲線中間最窄處間的距離為,點與點,點與點均關于該雙曲線的對稱中心對稱,且,則()A. B.C. D.11.當圓的圓心到直線的距離最大時,()A B.C. D.12.2020年12月4日,嫦娥五號探測器在月球表面第一次動態(tài)展示國旗.1949年公布的《國旗制法說明》中就五星的位置規(guī)定:大五角星有一個角尖正向上方,四顆小五角星均各有一個角尖正對大五角星的中心點.有人發(fā)現(xiàn),第三顆小星的姿態(tài)與大星相近.為便于研究,如圖,以大星的中心點為原點,建立直角坐標系,,,,分別是大星中心點與四顆小星中心點的聯(lián)結線,,則第三顆小星的一條邊AB所在直線的傾斜角約為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設點是雙曲線上的一點,、分別是雙曲線的左、右焦點,已知,且,則雙曲線的離心率為________14.“五經(jīng)”是《詩經(jīng)》、《尚書》、《禮記》、《周易》、《春秋》的合稱,貴為中國文化經(jīng)典著作,所載內(nèi)容及哲學思想至今仍具有積極意義和參考價值.某校計劃開展“五經(jīng)”經(jīng)典誦讀比賽活動,某班有、兩位同學參賽,比賽時每位同學從這本書中隨機抽取本選擇其中的內(nèi)容誦讀,則、兩位同學抽到同一本書的概率為______.15.在空間直角坐標系中,若三點、、滿足,則實數(shù)的值為__________.16.雙曲線的一條漸近線的一個方向向量為,則______(寫出一個即可)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某電腦公司為調(diào)查旗下A品牌電腦的使用情況,隨機抽取200名用戶,根據(jù)不同年齡段(單位:歲)統(tǒng)計如下表:分組頻率/組距0.010.040.070.060.02(1)根據(jù)上表,試估計樣本的中位數(shù)、平均數(shù)(同一組數(shù)據(jù)以該組區(qū)間的中點值為代表,結果精確到0.1);(2)按照年齡段從內(nèi)的用戶中進行分層抽樣,抽取6人,再從中隨機選取2人贈送小禮品,求恰有1人在內(nèi)的概率18.(12分)已知直線和的交點為P,求:(1)過點P且與直線垂直的直線l的方程;(2)以點P為圓心,且與直線相交所得弦長為12的圓的方程;(3)從下面①②兩個問題中選一個作答,①若直線l過點,且與兩坐標軸的正半軸所圍成的三角形面積為,求直線l的方程②求圓心在直線上,與x軸相切,被直線截得的弦長的圓的方程注:如果選擇兩個問題分別作答,按第一個計分19.(12分)已知函數(shù),且a0(1)當a=1時,求函數(shù)f(x)的單調(diào)區(qū)間;(2)記函數(shù),若函數(shù)有兩個零點,①求實數(shù)a的取值范圍;②證明:20.(12分)某微小企業(yè)員工的年齡分布莖葉圖如圖所示:(1)求該公司員工年齡的極差和第25百分位數(shù);(2)從該公司員工中隨機抽取一位,記所抽取員工年齡在區(qū)間內(nèi)為事件,所抽取員工年齡在區(qū)間內(nèi)為事件,判斷事件與是否互相獨立,并說明理由;21.(12分)在△中,角A,B,C的對邊分別為a,b,c,已知,,.(1)求的大小及△的面積;(2)求的值.22.(10分)已如空間直角標系中,點都在平面內(nèi),求實數(shù)y的值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù)空間向量的線性運算法則——三角形法,準確運算,即可求解.【詳解】由題意,在平行六面體中,,可得.故選:A.2、A【解析】設所求點的坐標為,由,逐一驗證選項即可【詳解】設所求點的坐標為,則,因為平面的一個法向量為,所以,,對于選項A,,對于選項B,,對于選項C,,對于選項D,故選:A3、D【解析】設該等差數(shù)列為,其公差為,根據(jù)題意和等差數(shù)列的性質(zhì)可得,進而求出結果.【詳解】設該等差數(shù)列為,其公差為,由題意知,,由,解得,所以.故選:D4、C【解析】根據(jù)兩點之間的距離公式的幾何意義即可判定出動點軌跡.【詳解】由題意可知表示動點到點和點的距離之和等于,又因為點和點的距離等于,所以動點的軌跡為線段.故選:5、D【解析】先求解出導函數(shù),然后代入到導函數(shù)中,所求導數(shù)值即為切線斜率.【詳解】因為,所以,所以切線的斜率為.故選:D.6、D【解析】由集合的關系及交集運算,逐項判斷即可得解.【詳解】因為集合,,所以,,.故選:D.【點睛】本題考查了集合關系的判斷及集合的交集運算,考查了運算求解能力,屬于基礎題.7、B【解析】根據(jù)函數(shù)單調(diào)性定義、二次函數(shù)性質(zhì)及對稱軸方程,即可求解參數(shù)取值范圍.【詳解】依題意可得,在上為減函數(shù),則,即的取值范圍是故選:B【點睛】本題考查函數(shù)單調(diào)性定義,二次函數(shù)性質(zhì),屬于基礎題.8、C【解析】根據(jù)題圖分析數(shù)據(jù),對選項逐一判斷【詳解】對于A,14天中有1,3,12,13共4日空氣質(zhì)量指數(shù)為“良”,故A正確對于B,從2日到5日空氣質(zhì)量指數(shù)越來越高,故空氣質(zhì)量越來越差,故B正確對于C,14個數(shù)據(jù)中位數(shù)為:,故C錯誤對于D,觀察折線圖可知D正確故選:C9、B【解析】根據(jù),利用等比數(shù)列的通項公式求解.【詳解】因為,所以,則,解得,所以.故選:B10、D【解析】依題意以雙曲線的對稱中心為坐標原點建系,設雙曲線的方程為,根據(jù)已知求得,點縱坐標代入計算即可求得橫坐標得出結果.【詳解】以雙曲線的對稱中心為坐標原點,建立平面直角坐標系,因為雙曲線的離心率為2,所以可設雙曲線的方程為,依題意可得,則,即雙曲線的方程為.因為,所以的縱坐標為18.由,得,故.故選:D.11、C【解析】求出圓心坐標和直線過定點,當圓心和定點的連線與直線垂直時滿足題意,再利用兩直線垂直,斜率乘積為-1求解即可.【詳解】解:因為圓的圓心為,半徑,又因為直線過定點A(-1,1),故當與直線垂直時,圓心到直線的距離最大,此時有,即,解得.故選:C.12、C【解析】由五角星的內(nèi)角為,可知,又平分第三顆小星的一個角,過作軸平行線,則,即可求出直線的傾斜角.【詳解】都為五角星的中心點,平分第三顆小星的一個角,又五角星的內(nèi)角為,可知,過作軸平行線,則,所以直線的傾斜角為,故選:C【點睛】關鍵點點睛:本題考查直線傾斜角,解題的關鍵是通過做輔助線找到直線的傾斜角,通過幾何關系求出傾斜角,考查學生的數(shù)形結合思想,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由雙曲線的定義可求得、,利用勾股定理可得出關于、的齊次等式,進而可求得該雙曲線的離心率.【詳解】由雙曲線定義可得,故,由勾股定理可得,即,可得,因此,該雙曲線的離心率為.故答案為:.14、##【解析】計算出、兩位同學各隨機抽出一本書的結果種數(shù),以及、兩位同學抽到同一本書的結果種數(shù),利用古典概型的概率公式可求得所求事件的概率.【詳解】、兩位同學抽到的結果都有種,由分步乘法計數(shù)原理可知,、兩位同學各隨機抽出一本書,共有種結果,而、兩位同學抽到同一本書的結果有種,故所求概率為.故答案為:.15、##【解析】分析可知,結合空間向量數(shù)量積的坐標運算可求得結果.【詳解】由已知可得,,因為,則,即,解得.故答案為:.16、(答案不唯一)【解析】寫出雙曲線的漸近線方程,結合方向向量的定義求即可.【詳解】由題設,雙曲線的漸近線方程為,又是一條漸近線的一個方向向量,所以或或或,所以或.故答案為:(答案不唯一)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)中位數(shù)為38.6,平均數(shù)為38.5歲;(2).【解析】(1)由中位數(shù)分數(shù)據(jù)兩邊的頻率相等,列方程求中位數(shù);根據(jù)各組數(shù)據(jù)的中點數(shù)乘以頻率即可得平均數(shù);(2)由分層抽樣確定從中各抽4人、2人,列舉出隨機選取2人的所有組合,得到恰有1人在的組合數(shù),即可求概率.【詳解】(1)中位數(shù)在中,設為,則,解得.平均數(shù)為歲.所以樣本的中位數(shù)約為38.6,平均數(shù)為38.5歲.(2)根據(jù)分層抽樣法,其中位于中的有4人,記為,,,;位于中的有2人,記為,.從6人中抽取2人,有,,,,,,,,,,,,,,,共15種情況,恰有1人在內(nèi)的有,,,,,,,,共8種情況,∴恰有1人在內(nèi)的概率為.【點睛】關鍵點點睛:由中位數(shù)的性質(zhì)以及平均數(shù)與各組數(shù)據(jù)中點值、頻率的關系求中位數(shù)、平均數(shù);根據(jù)分層抽樣確定各組選取人數(shù),利用列舉法求概率.18、(1)(2)(3)答案見解析【解析】(1)聯(lián)立方程組求得交點的坐標,結合直線與直線垂直,求得直線的斜率為,利用直線的點斜式,即可求解;(2)先求得點到直線的距離為,由圓的的垂徑定理列出方程求得圓的半徑,即可求解;(3)若選①:設直線l的的斜率為,得到,結合題意列出方程,求得的值,即可求解;若選②,設所求圓的圓心為,半徑為,得到,利用圓的垂徑定理列出方程求得的值,即可求解.【小問1詳解】解:由直線和的交點為P,聯(lián)立方程組,解得,即,因為直線與直線垂直,所以直線的斜率為,所以過點且與直線垂直的直線方程為,即.【小問2詳解】解:因為點到直線的距離為,設所求圓的半徑為,由圓的的垂徑定理得,弦長,解得,所以所求圓的方程為.【小問3詳解】解:若選①:直線l過點,且與兩坐標軸的正半軸所圍成的三角形面積為,設直線l的的斜率為,可得直線的方程為,即,則直線與坐標軸的交點分別為,由,解得或,所以所求直線的方程為或.若選②,設所求圓的圓心為,半徑為,因為圓與x軸相切,可得,又由圓心到直線的距離為,利用圓的垂徑定理可得,即,解得,即圓心坐標為或,所以所求圓的方程為或.19、(1)函數(shù)f(x)在區(qū)間(0,+)上單調(diào)遞減(2)①;②證明見解析【解析】(1)求導,求解可得導函數(shù)恒小于等于0,即得證;(2)①分析函數(shù)的單調(diào)性,由有兩個實數(shù)根可求解;②由(1)得2lnxx?,再利用其放縮可得,由此有,問題得證.【小問1詳解】當a=1時,函數(shù)因為所以函數(shù)f(x)在區(qū)間(0,+)上單調(diào)遞減;【小問2詳解】(i)由已知可得方程有兩個實數(shù)根記,則.當時,,函數(shù)k(x)是增函數(shù);當時,,函數(shù)k(x)是減函數(shù),所以,故(ii)易知,當x1時,,故.由(1)可知,當0x1時,,所以2lnxx?由,得,所以因為,所以20、(1)極差為;第25百分位數(shù)為(2)事件和相互獨立,理由見解析【解析】(1)根據(jù)定義直接計算極差和百分位數(shù)得到答案.(2)計算得到,,,即,得到答案.【小問1詳解】員工年齡的極差為,,故第25百分位數(shù)為.【小問2詳解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論