版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2024屆遼寧省葫蘆島市第一中學(xué)高二上數(shù)學(xué)期末檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.等差數(shù)列x,,,…的第四項(xiàng)為()A.5 B.6C.7 D.82.即空氣質(zhì)量指數(shù),越小,表明空氣質(zhì)量越好,當(dāng)不大于100時(shí)稱空氣質(zhì)量為“優(yōu)良”.如圖是某市3月1日到12日的統(tǒng)計(jì)數(shù)據(jù).則下列敘述正確的是A.這天的的中位數(shù)是B.天中超過天空氣質(zhì)量為“優(yōu)良”C.從3月4日到9日,空氣質(zhì)量越來越好D.這天的的平均值為3.下列橢圓中,焦點(diǎn)坐標(biāo)是的是()A. B.C. D.4.如圖,O是坐標(biāo)原點(diǎn),P是雙曲線右支上的一點(diǎn),F(xiàn)是E的右焦點(diǎn),延長PO,PF分別交E于Q,R兩點(diǎn),已知QF⊥FR,且,則E的離心率為()A. B.C. D.5.已知數(shù)列中,其前項(xiàng)和為,且滿足,數(shù)列的前項(xiàng)和為,若對恒成立,則實(shí)數(shù)的值可以是()A. B.2C.3 D.6.記Sn為等差數(shù)列{an}的前n項(xiàng)和,給出下列4個(gè)條件:①a1=1;②a4=4;③S3=9;④S5=25,若只有一個(gè)條件不成立,則該條件為()A.① B.②C.③ D.④7.已知圓的圓心在x軸上,半徑為1,且過點(diǎn),圓:,則圓,的公共弦長為A. B.C. D.28.若圓與直線相切,則實(shí)數(shù)的值為()A. B.或3C. D.或9.如圖,P為圓錐的頂點(diǎn),O是圓錐底面的圓心,圓錐PO的軸截面PAE是邊長為2的等邊三角形,是底面圓的內(nèi)接正三角形.則()A. B.C. D.10.已知三棱錐O-ABC,點(diǎn)M,N分別為AB,OC的中點(diǎn),且,用表示,則等于()A. B.C. D.11.已知,,,執(zhí)行如圖所示的程序框圖,輸出值為()A. B.C. D.12.已知橢圓方程為,點(diǎn)在橢圓上,右焦點(diǎn)為F,過原點(diǎn)的直線與橢圓交于A,B兩點(diǎn),若,則橢圓的方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.拋物線的準(zhǔn)線方程為_______.14.關(guān)于曲線C:1,有如下結(jié)論:①曲線C關(guān)于原點(diǎn)對稱;②曲線C關(guān)于直線x±y=0對稱;③曲線C是封閉圖形,且封閉圖形的面積大于2π;④曲線C不是封閉圖形,且它與圓x2+y2=2無公共點(diǎn);⑤曲線C與曲線D:|x|+|y|=2有4個(gè)公共點(diǎn),這4點(diǎn)構(gòu)成正方形其中正確結(jié)論的個(gè)數(shù)是_____15.已知圓,過點(diǎn)作圓O的切線,則切線方程為___________.16.設(shè)等差數(shù)列的前項(xiàng)和為,若,,則______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的左,右頂點(diǎn)分別是,,且,是橢圓上異于,的不同的兩點(diǎn)(1)若,證明:直線必過坐標(biāo)原點(diǎn);(2)設(shè)點(diǎn)是以為直徑的圓和以為直徑的圓的另一個(gè)交點(diǎn),記線段的中點(diǎn)為,若,求動(dòng)點(diǎn)的軌跡方程18.(12分)2021年7月25日,在東京奧運(yùn)會(huì)自行車公路賽中,奧地利數(shù)學(xué)女博士安娜·基秣崔天以3小時(shí)52分45秒的成績獲得冠軍,震驚了世界!廣大網(wǎng)友驚呼“學(xué)好數(shù)理化,走遍天下都不怕”.某市對中學(xué)生的體能測試成績與數(shù)學(xué)測試成績進(jìn)行分析,并從中隨機(jī)抽取了200人進(jìn)行抽樣分析,得到下表(單位:人):體能一般體能優(yōu)秀合計(jì)數(shù)學(xué)一般5050100數(shù)學(xué)優(yōu)秀4060100合計(jì)90110200(1)根據(jù)以上數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過0.10的前提下認(rèn)為“體能優(yōu)秀”還是“體能一般”與數(shù)學(xué)成績有關(guān)?(結(jié)果精確到小數(shù)點(diǎn)后兩位)(2)①現(xiàn)從抽取的數(shù)學(xué)優(yōu)秀的人中,按“體能優(yōu)秀”與“體能一般”這兩類進(jìn)行分層抽樣抽取10人,然后,再從這10人中隨機(jī)選出4人,求其中至少有2人是“體能優(yōu)秀”的概率;②將頻率視為概率,以樣本估計(jì)總體,從該市中學(xué)生中隨機(jī)抽取10人參加座談會(huì),記其中“體能優(yōu)秀”的人數(shù)為X,求X的數(shù)學(xué)期望和方差參考公式:,其中參考數(shù)據(jù):0.150.100.050.250.0102.0722.7063.8415.0246.63519.(12分)已知公差不為零的等差數(shù)列中,,且,,成等比數(shù)列.(Ⅰ)求數(shù)列的通項(xiàng)公式;(Ⅱ)若,求數(shù)列的前項(xiàng)和.20.(12分)公差不為0的等差數(shù)列中,,且成等比數(shù)列(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),數(shù)列的前n項(xiàng)和為.若,求的取值范圍21.(12分)已知單調(diào)遞增的等比數(shù)列滿足:,且是,的等差中項(xiàng)(1)求數(shù)列的通項(xiàng)公式;(2)若,,求22.(10分)在中,角A,B,C所對的邊分別為a,b,c,且.(1)求角A的大??;(2)若,且的面積為,求的周長.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】根據(jù)等差數(shù)列的定義求出x,求出公差,即可求出第四項(xiàng).【詳解】由題可知,等差數(shù)列公差d=(x+2)-x=2,故3x+6=x+2+2,故x=-1,故第四項(xiàng)為-1+(4-1)×2=5.故選:A.2、C【解析】這12天的AQI指數(shù)值的中位數(shù)是,故A不正確;這12天中,空氣質(zhì)量為“優(yōu)良”的有95,85,77,67,72,92共6天,故B不正確;;從4日到9日,空氣質(zhì)量越來越好,,故C正確;這12天的指數(shù)值的平均值為110,故D不正確.故選C3、B【解析】根據(jù)給定條件逐一分析各選項(xiàng)中的橢圓焦點(diǎn)即可判斷作答.【詳解】對于A,橢圓的焦點(diǎn)在x軸上,A不是;對于B,橢圓,即,焦點(diǎn)在y軸上,半焦距,其焦點(diǎn)為,B是;對于C,橢圓,即,焦點(diǎn)在y軸上,半焦距,其焦點(diǎn)為,C不是;對于D,橢圓,即,焦點(diǎn)在y軸上,半焦距,其焦點(diǎn)為,D不是.故選:B4、B【解析】令雙曲線E的左焦點(diǎn)為,連線即得,設(shè),借助雙曲線定義及直角用a表示出|PF|,,再借助即可得解.【詳解】如圖,令雙曲線E的左焦點(diǎn)為,連接,由對稱性可知,點(diǎn)線段中點(diǎn),則四邊形是平行四邊形,而QF⊥FR,于是有是矩形,設(shè),則,,,在中,,解得或m=0(舍去),從而有,中,,整理得,,所以雙曲線E的離心率為故選:B5、D【解析】由求出,從而可以求,再根據(jù)已知條件不等式恒成立,可以進(jìn)行適當(dāng)放大即可.【詳解】若n=1,則,故;若,則由得,故,所以,,又因?yàn)閷愠闪ⅲ?dāng)時(shí),則恒成立,當(dāng)時(shí),,所以,,,若n為奇數(shù),則;若n為偶數(shù),則,所以所以,對恒成立,必須滿足.故選:D6、B【解析】根據(jù)等差數(shù)列通項(xiàng)公式及求和公式的基本量計(jì)算,對比即可得出結(jié)果.【詳解】設(shè)等差數(shù)列{an}的公差為,,,,即,即.當(dāng),時(shí),①③④均成立,②不成立.故選:B7、A【解析】根據(jù)題意設(shè)圓方程為:,代點(diǎn)即可求出,進(jìn)而求出方程,兩圓方程做差即可求得公共弦所在直線方程,再利用垂徑定理去求弦長.【詳解】設(shè)圓的圓心為,則其標(biāo)準(zhǔn)方程為:,將點(diǎn)代入方程,解得,故方程為:,兩圓,方程作差得其公共弦所在直線方程為:,圓心到該直線的距離為,因此公共弦長為,故選:A.【點(diǎn)睛】本題綜合考查圓的方程及直線與圓,圓與圓位置關(guān)系,屬于中檔題.一般遇見直線與圓相交問題時(shí),常利用垂徑定理解決問題.8、D【解析】利用圓心到直線的距離等于半徑可得答案.【詳解】若圓與直線相切,則到直線的距離為,所以,解得,或.故選:D.9、B【解析】先求出,再利用向量的線性運(yùn)算和數(shù)量積計(jì)算求解.【詳解】解:由題得,,故選:B10、D【解析】根據(jù)空間向量的加法、減法和數(shù)乘運(yùn)算可得結(jié)果.【詳解】.故選:D11、A【解析】模擬程序運(yùn)行可得程序框圖的功能是計(jì)算并輸出三個(gè)數(shù)中的最小數(shù),計(jì)算三個(gè)數(shù)判斷作答.【詳解】模擬程序運(yùn)行可得程序框圖的功能是計(jì)算并輸出三個(gè)數(shù)中的最小數(shù),因,,,則,不成立,則,不成立,則,所以應(yīng)輸出的x值為.故選:A12、A【解析】根據(jù)橢圓的性質(zhì)可得,則橢圓方程可求.【詳解】由點(diǎn)在橢圓上得,由橢圓的對稱性可得,則,故橢圓方程為.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由拋物線的標(biāo)準(zhǔn)方程為x2=y,得拋物線是焦點(diǎn)在y軸正半軸的拋物線,2p=1,∴其準(zhǔn)線方程是y=,故答案為14、4【解析】直接利用曲線的性質(zhì),對稱性的應(yīng)用可判斷①②;求出可判斷③;聯(lián)立方程,解方程組可判斷④⑤的結(jié)論【詳解】對于①,將方程中的x換為﹣x,y換為﹣y,方程不變,曲線C關(guān)于原點(diǎn)對稱,故①正確;對于②,將方程中的x換為﹣y,把y換成﹣x,方程不變,曲線C關(guān)于直線x±y=0對稱,故②正確;對于③,由方程得,故曲線C不是封閉圖形,故③錯(cuò)誤;對于④,曲線C:,不是封閉圖形,聯(lián)立整理可得:,方程無解,故④正確;對于⑤,曲線C與曲線D:由于,解得,根據(jù)對稱性,可得公共點(diǎn)為,故曲線C與曲線D有四個(gè)交點(diǎn),這4點(diǎn)構(gòu)成正方形,故⑤正確故答案為:415、或【解析】首先判斷點(diǎn)圓位置關(guān)系,再設(shè)切線方程并聯(lián)立圓的方程,根據(jù)所得方程求參數(shù)k,即可寫出切線方程.【詳解】由題設(shè),,故在圓外,根據(jù)圓及,知:過作圓O的切線斜率一定存在,∴可設(shè)切線為,聯(lián)立圓的方程,整理得,∴,解得或.∴切線方程為或.故答案為:或.16、77【解析】依題意利用等差中項(xiàng)求得,進(jìn)而求得.【詳解】依題意可得,則,故故答案為:77.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】(1)設(shè),首先證明,從而可得到,即得到;進(jìn)而可得到四邊形為平行四邊形;再根據(jù)為的中點(diǎn),即可證明直線必過坐標(biāo)原點(diǎn)(2)設(shè)出直線的方程,與橢圓方程聯(lián)立,消元,寫韋達(dá);根據(jù)條件可求出直線MN過定點(diǎn),從而可得到過定點(diǎn),進(jìn)而可得到點(diǎn)在以為直徑的圓上運(yùn)動(dòng),從而可求出動(dòng)點(diǎn)的軌跡方程【小問1詳解】設(shè),則,即因?yàn)?,,所以因?yàn)椋?,所?同理可證.因?yàn)?,,所以四邊形為平行四邊形,因?yàn)闉榈闹悬c(diǎn),所以直線必過坐標(biāo)原點(diǎn)【小問2詳解】當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為,,聯(lián)立,整理得,則,,.因?yàn)椋?,因?yàn)?,解得?當(dāng)時(shí),直線的方程為過點(diǎn)A,不滿足題意,所以舍去;所以直線的方程為,所以直線過定點(diǎn).當(dāng)直線的斜率不存在時(shí),因?yàn)?,所以直線的方程為,經(jīng)驗(yàn)證,符合題意.故直線過定點(diǎn).因?yàn)闉榈闹悬c(diǎn),為的中點(diǎn),所以過定點(diǎn).因?yàn)榇怪逼椒止蚕?,所以點(diǎn)在以為直徑的圓上運(yùn)動(dòng),該圓的半徑,圓心坐標(biāo)為,故動(dòng)點(diǎn)的軌跡方程為.18、(1)不能,理由見解析;(2)①,②,【解析】(1)運(yùn)用公式求出,比較得出結(jié)論.(2)①先用分層抽樣得到“體能優(yōu)秀”與“體能一般”的人數(shù),再利用公式計(jì)算至少有2人是“體能優(yōu)秀”的概率.②根據(jù)已知條件知此分布列為二項(xiàng)分布,故利用數(shù)學(xué)期望和方差的公式即可求出答案【小問1詳解】由表格的數(shù)據(jù)可得,,故不能在犯錯(cuò)誤的概率不超過0.10的前提下認(rèn)為“體能優(yōu)秀”還是“體能一般”與數(shù)學(xué)成績有關(guān).【小問2詳解】①在數(shù)學(xué)優(yōu)秀的人群中,“體能優(yōu)秀”與“體能一般”的比例為“體能一般”的人數(shù)為,“體能優(yōu)秀”的人數(shù)為故再從這10人中隨機(jī)選出4人,其中至少有2人是“體能優(yōu)秀”的概率為.②由題意可得,隨機(jī)抽取一人“體能優(yōu)秀”的概率為,且故,19、(1)(2)【解析】(Ⅰ)將數(shù)列中的項(xiàng)用和表示,根據(jù)等比數(shù)列的性質(zhì)可得到關(guān)于的一元二次方程可求得的值,即可得到數(shù)列的通項(xiàng)公式;(Ⅱ)根據(jù)(Ⅰ)可求得的通項(xiàng)公式,用分組求和法可得其前項(xiàng)和.試題解析:(Ⅰ)設(shè)等差數(shù)列的公差為,因,且,,成等比數(shù)列,即,,成等比數(shù)列,所以有,即,解得或(舍去),所以,,數(shù)列的通項(xiàng)公式為.(Ⅱ)由(Ⅰ)知,所以.點(diǎn)睛:本題主要考查了等差數(shù)列,等比數(shù)列的概念,以及數(shù)列的求和,屬于高考中常考知識(shí)點(diǎn),難度不大;常見的數(shù)列求和的方法有公式法即等差等比數(shù)列求和公式,分組求和類似于,其中和分別為特殊數(shù)列,裂項(xiàng)相消法類似于,錯(cuò)位相減法類似于,其中為等差數(shù)列,為等比數(shù)列等.20、(1)(2)【解析】(1)利用等比數(shù)列的定義以及等差數(shù)列的性質(zhì),列出方程即可得到答案;(2)先求出的通項(xiàng),再利用的單調(diào)性即可得到的最小值,從而求得的取值范圍【小問1詳解】依題意,,,所以,設(shè)等差數(shù)列的公差為,則,解得,所以【小問2詳解】,則數(shù)列是遞增數(shù)列,,所以,若,則.21、(1);(2)【解析】(1)將已知條件整理變形為等比數(shù)列的首項(xiàng)和公比來表示,解方程組得到基本量,可得到通項(xiàng)公式(2)化簡通項(xiàng)得,根據(jù)特點(diǎn)求和時(shí)采用錯(cuò)位相減法求解試題
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年預(yù)拌混凝土訂購條款
- 銀行助學(xué)貸款管理辦法
- 2024年高端墻紙施工質(zhì)量保證協(xié)議版B版
- 2024年餐館后廚員工合同范本
- 2024年版房地產(chǎn)項(xiàng)目合作開發(fā)委托合同版B版
- 2024完整辦公樓轉(zhuǎn)讓居間業(yè)務(wù)合同(帶裝修)3篇
- 網(wǎng)絡(luò)與新媒體概論說課稿
- 2025年度碼頭集裝箱清洗消毒服務(wù)合同范本2篇
- 醫(yī)院年會(huì)主持詞
- 2025年度體育設(shè)施場地使用權(quán)出讓合同范本3篇
- 機(jī)動(dòng)車查驗(yàn)員技能理論考試題庫大全-上(單選題部分)
- 監(jiān)理人員安全生產(chǎn)培訓(xùn)
- 2024-2030年中國電力檢修行業(yè)運(yùn)行狀況及投資前景趨勢分析報(bào)告
- 河北省百師聯(lián)盟2023-2024學(xué)年高二上學(xué)期期末大聯(lián)考?xì)v史試題(解析版)
- 中央空調(diào)系統(tǒng)運(yùn)行與管理考核試卷
- 核電工程排水隧道專項(xiàng)施工方案
- 山西省呂梁市2023-2024學(xué)年高二上學(xué)期期末考試數(shù)學(xué)試題(解析版)
- 2024年市場運(yùn)營部職責(zé)樣本(3篇)
- 民辦學(xué)校招生教師培訓(xùn)
- 《中華人民共和國機(jī)動(dòng)車駕駛?cè)丝颇恳豢荚囶}庫》
- 2024年VB程序設(shè)計(jì):從入門到精通
評論
0/150
提交評論