版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆吉林省通榆縣一中高二上數(shù)學(xué)期末調(diào)研模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書(shū)寫(xiě),字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.拋物線C:的焦點(diǎn)為F,P,R為C上位于F右側(cè)的兩點(diǎn),若存在點(diǎn)Q使四邊形PFRQ為正方形,則()A. B.C. D.2.下列命題中正確的個(gè)數(shù)為()①若向量,與空間任意向量都不能構(gòu)成基底,則;②若向量,,是空間一組基底,則,,也是空間的一組基底;③為空間一組基底,若,則;④對(duì)于任意非零空間向量,,若,則A.1 B.2C.3 D.43.已知數(shù)列滿足:,數(shù)列的前n項(xiàng)和為,若恒成立,則的取值范圍是()A. B.C. D.4.工業(yè)生產(chǎn)者出廠價(jià)格指數(shù)(PRoduceRPRiceIndexfoRIndustRialPRoducts,簡(jiǎn)稱(chēng)PPI)是反映工業(yè)企業(yè)產(chǎn)品第一次出售時(shí)的出廠價(jià)格的變化趨勢(shì)和變動(dòng)幅度,是反映某一時(shí)期生產(chǎn)領(lǐng)域價(jià)格變動(dòng)情況的重要經(jīng)濟(jì)指標(biāo),也是制定有關(guān)經(jīng)濟(jì)政策和國(guó)民經(jīng)濟(jì)核算的重要依據(jù).根據(jù)下面提供的我國(guó)2020年1月—2021年11月的工業(yè)生產(chǎn)者出廠價(jià)格指數(shù)的月度同比(將上一年同月作為基期進(jìn)行對(duì)比的價(jià)格指數(shù))和月度環(huán)比(將上月作為基期進(jìn)行對(duì)比的價(jià)格指數(shù))漲跌情況的折線圖判斷,以下結(jié)論正確的()A.2020年各月的PPI在逐月增大B.2020年各月的PPI均高于2019年同期水平C.2021年1月—11月各月的PPI在逐月減小D.2021年1月—11月各月的PPI均高于2020年同期水平5.已知圓C1:(x+3)2+y2=1和圓C2:(x-3)2+y2=9,動(dòng)圓M同時(shí)與圓C1及圓C2相外切,求動(dòng)圓圓心M的軌跡方程()A.x2-=1(x≤-1) B.x2-=1C.x2-=1(x1) D.-x2=16.1852年英國(guó)來(lái)華傳教士偉烈亞力將《孫子算經(jīng)》中“物不知數(shù)”問(wèn)題的解法傳至歐洲,西方人稱(chēng)之為“中國(guó)剩余定理”.現(xiàn)有這樣一個(gè)問(wèn)題:將1到200中被3整除余1且被4整除余2的數(shù)按從小到大的順序排成一列,構(gòu)成數(shù)列,則=()A.130 B.132C.140 D.1447.用這3個(gè)數(shù)組成沒(méi)有重復(fù)數(shù)字的三位數(shù),則事件“這個(gè)三位數(shù)是偶數(shù)”與事件“這個(gè)三位數(shù)大于342”()A.是互斥但不對(duì)立事件 B.不是互斥事件C.是對(duì)立事件 D.是不可能事件8.拋物線的焦點(diǎn)到準(zhǔn)線的距離為()A. B.C. D.19.我國(guó)古代數(shù)學(xué)典籍《四元玉鑒》中有如下一段話:“河有汛,預(yù)差夫一千八百八十人筑堤,只云初日差六十五人,次日轉(zhuǎn)多七人,今有三日連差三百人,問(wèn)已差人幾天,差人幾何?”其大意為“官府陸續(xù)派遣1880人前往修筑堤壩,第一天派出65人,從第二天開(kāi)始每天派出的人數(shù)比前一天多7人.已知最后三天一共派出了300人,則目前一共派出了多少天,派出了多少人?”()A.6天495人 B.7天602人C.8天716人 D.9天795人10.如圖,空間四邊形OABC中,,,,點(diǎn)M在上,且,點(diǎn)N為BC中點(diǎn),則()A. B.C. D.11.已知實(shí)數(shù)、滿足,則的最大值為()A. B.C. D.12.已知等差數(shù)列的前n項(xiàng)和為,且,,則為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在空間直角坐標(biāo)系中,若三點(diǎn)、、滿足,則實(shí)數(shù)的值為_(kāi)_________.14.等軸(實(shí)軸長(zhǎng)與虛軸長(zhǎng)相等)雙曲線的離心率_______15.一個(gè)四面體有五條棱長(zhǎng)均為2,則該四面體的體積最大值為_(kāi)______16.已知函數(shù)有兩個(gè)極值點(diǎn),則實(shí)數(shù)a的取值范圍為_(kāi)_______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知數(shù)列為各項(xiàng)均為正數(shù)的等比數(shù)列,若(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和18.(12分)已知斜率為的直線與橢圓:交于,兩點(diǎn)(1)若線段的中點(diǎn)為,求的值;(2)若,求證:原點(diǎn)到直線的距離為定值19.(12分)已知橢圓的右焦點(diǎn)是橢圓上的一動(dòng)點(diǎn),且的最小值是1,當(dāng)垂直長(zhǎng)軸時(shí),.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)直線與橢圓相切,且交圓于兩點(diǎn),求面積的最大值,并求此時(shí)直線方程.20.(12分)已知命題:方程有實(shí)數(shù)解,命題:,.(1)若是真命題,求實(shí)數(shù)的取值范圍;(2)若為假命題,且為真命題,求實(shí)數(shù)的取值范圍.21.(12分)如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AD//BC,AB=BC=CD=1,AD=2,直線BC與平面PCD所成角的正弦值為.(1)求證:平面PCD⊥平面PAC;(2)求平面PAB與平面PCD所成銳二面角的余弦值.22.(10分)已知數(shù)列是公差為2的等差數(shù)列,它的前n項(xiàng)和為Sn,且成等比數(shù)列.(1)求的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】不妨設(shè),不妨設(shè),則,利用拋物線的對(duì)稱(chēng)性及正方形的性質(zhì)列出的方程求得后可得結(jié)論【詳解】如圖所示,設(shè),不妨設(shè),則,由拋物線的對(duì)稱(chēng)性及正方形的性質(zhì)可得,解得(正數(shù)舍去),所以故選:A2、C【解析】根據(jù)題意、空間向量基底的概念和共線的運(yùn)算即可判斷命題①②③,根據(jù)空間向量的平行關(guān)系即可判斷命題④.【詳解】①:向量與空間任意向量都不能構(gòu)成一個(gè)基底,則與共線或與其中有一個(gè)為零向量,所以,故①正確;②:由向量是空間一組基底,則空間中任意一個(gè)向量,存在唯一的實(shí)數(shù)組使得,所以也是空間一組基底,故②正確;③:由為空間一組基底,若,則,所以,故③正確;④:對(duì)于任意非零空間向量,,若,則存在一個(gè)實(shí)數(shù)使得,有,又中可以有為0的,分式?jīng)]有意義,故④錯(cuò)誤.故選:C3、D【解析】由于,所以利用裂項(xiàng)相消求和法可求得,然后由可得恒成立,再利用基本不等式求出的最小值即可【詳解】,故,故恒成立等價(jià)于,即恒成立,化簡(jiǎn)得到,因?yàn)?,?dāng)且僅當(dāng),即時(shí)取等號(hào),所以故選:D4、D【解析】根據(jù)折線圖中同比、環(huán)比的正負(fù)情況,結(jié)合各選項(xiàng)的描述判斷正誤.【詳解】A:2020年前5個(gè)月PPI在逐月減小,錯(cuò)誤;B:2020年各月同比為負(fù)值,即低于2019年同期水平,錯(cuò)誤;C:2021年1月—11月各月的PPI環(huán)比為正值,即逐月增大,錯(cuò)誤;D:2021年1月—11月各月的PPI同比為正值,即高于2020年同期水平,正確.故選:D.5、A【解析】根據(jù)雙曲線定義求解【詳解】,則根據(jù)雙曲線定義知的軌跡為的左半支故選:A第II卷(非選擇題6、A【解析】分析數(shù)列的特點(diǎn),可知其是等差數(shù)列,寫(xiě)出其通項(xiàng)公式,進(jìn)而求得結(jié)果,【詳解】被3整除余1且被4整除余2的數(shù)按從小到大的順序排成一列,這樣的數(shù)構(gòu)成首項(xiàng)為10,公差為12的等差數(shù)列,所以,故,故選:A7、B【解析】根據(jù)題意列舉出所有可能性,進(jìn)而根據(jù)各類(lèi)事件的定義求得答案.【詳解】由題意,將2,3,4組成一個(gè)沒(méi)有重復(fù)數(shù)字的三位數(shù)的情況有:{234,243,324,342,423,432},其中偶數(shù)有{234,324,342,432},大于342的有{423,432}.所以?xún)蓚€(gè)事件不是互斥事件,也不是對(duì)立事件.故選:B.8、B【解析】由可得拋物線標(biāo)椎方程為:,由焦點(diǎn)和準(zhǔn)線方程即可得解.【詳解】由可得拋物線標(biāo)準(zhǔn)方程為:,所以拋物線的焦點(diǎn)為,準(zhǔn)線方程為,所以焦點(diǎn)到準(zhǔn)線的距離為,故選:B【點(diǎn)睛】本題考了拋物線標(biāo)準(zhǔn)方程,考查了焦點(diǎn)和準(zhǔn)線相關(guān)基本量,屬于基礎(chǔ)題.9、B【解析】根據(jù)題意,設(shè)每天派出的人數(shù)組成數(shù)列,可得數(shù)列是首項(xiàng),公差數(shù)7的等差數(shù)列,解方程可得所求值【詳解】解:設(shè)第天派出的人數(shù)為,則是以65為首項(xiàng)、7為公差的等差數(shù)列,且,,∴,,∴天則目前派出的人數(shù)為人,故選:B10、B【解析】利用空間向量運(yùn)算求得正確答案.【詳解】.故選:B11、A【解析】作出可行域,利用代數(shù)式的幾何意義,利用數(shù)形結(jié)合可求得的最大值.【詳解】作出不等式組所表示的可行域如下圖所示:聯(lián)立可得,即點(diǎn),代數(shù)式的幾何意義是連接可行域內(nèi)一點(diǎn)與定點(diǎn)連線的斜率,由圖可知,當(dāng)點(diǎn)在可行域內(nèi)運(yùn)動(dòng)時(shí),直線的傾斜角為銳角,當(dāng)點(diǎn)與點(diǎn)重合時(shí),直線的傾斜角最大,此時(shí)取最大值,即.故選:A.12、C【解析】直接由等差數(shù)列求和公式結(jié)合,求出,再由求和公式求出即可.【詳解】由題意知:,解得,則.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】分析可知,結(jié)合空間向量數(shù)量積的坐標(biāo)運(yùn)算可求得結(jié)果.【詳解】由已知可得,,因?yàn)?,則,即,解得.故答案為:.14、【解析】由題意可知,,由,化簡(jiǎn)可求離心率.【詳解】由題意可知,,兩邊同時(shí)平方,得,即,,所以離心率,故答案為:.15、1【解析】由已知中一個(gè)四面體有五條棱長(zhǎng)都等于2,易得該四面體必然有兩個(gè)面為等邊三角形,根據(jù)棱錐的幾何特征,分析出當(dāng)這兩個(gè)平面垂直時(shí),該四面體的體積最大,將相關(guān)幾何量代入棱錐體積公式,即可得到答案【詳解】一個(gè)四面體有五條棱長(zhǎng)都等于2,如下圖:設(shè)除PC外的棱均為2,設(shè)P到平面ABC距離為h,則三棱錐的體積V=,∵是定值,∴當(dāng)P到平面ABC距離h最大時(shí),三棱錐體積最大,故當(dāng)平面PAB⊥平面ABC時(shí),三棱錐體積最大,此時(shí)h為等邊三角形PAB的AB邊上的高,則h,故三棱錐體積的最大值為:故答案為:116、【解析】由題可得有兩個(gè)不同正根,利用分離參數(shù)法得到.令,,只需和有兩個(gè)交點(diǎn),利用導(dǎo)數(shù)研究的單調(diào)性與極值,數(shù)形結(jié)合即得.【詳解】∵的定義域?yàn)椋?,要使函?shù)有兩個(gè)極值點(diǎn),只需有兩個(gè)不同正根,并且在的兩側(cè)的單調(diào)性相反,在的兩側(cè)的單調(diào)性相反,由得,,令,,要使函數(shù)有兩個(gè)極值點(diǎn),只需和有兩個(gè)交點(diǎn),∵,令得:0<x<1;令得:x>1;所以在上單調(diào)遞增,在上單調(diào)遞減,當(dāng)時(shí),;當(dāng)時(shí),;作出和的圖像如圖,所以,即,即實(shí)數(shù)a的取值范圍為.故答案為:三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)【解析】(1)利用等比數(shù)列通項(xiàng)公式列出方程組,可求解,,從而寫(xiě)出;(2)化簡(jiǎn)數(shù)列,裂項(xiàng)相消法求和即可.【小問(wèn)1詳解】設(shè)數(shù)列的公比為,∵,∴,即①∵,∴②②÷①,解得∴∴【小問(wèn)2詳解】∵,∴∴∴18、(1);(2)證明見(jiàn)解析.【解析】(1)設(shè)出兩點(diǎn)的坐標(biāo),利用點(diǎn)差法即可求出的值;(2)設(shè)出直線的方程,與橢圓方程聯(lián)立,寫(xiě)韋達(dá);根據(jù),求出,從而可證明原點(diǎn)到直線的距離為定值【小問(wèn)1詳解】設(shè),則,,兩式相減,得,即,所以,即,又因?yàn)榫€段的中點(diǎn)為,所以,即;【小問(wèn)2詳解】設(shè)斜率為的直線為,,由,得,所以,,因?yàn)椋?,即,所以,所以,即,所以,原點(diǎn)到直線的距離為.所以原點(diǎn)到直線的距離為定值.19、(1);(2),.【解析】(1)由的最小值為1,得到,再由,結(jié)合,求得的值,即可求得橢圓的方程.(2)設(shè)切線的方程為,聯(lián)立方程組,根據(jù)直線與橢圓相切,求得,結(jié)合點(diǎn)到直線的距離公式和圓的弦長(zhǎng)公式,求得的面積的表示,結(jié)合函數(shù)的單調(diào)性,即可求解.【詳解】(1)由題意,點(diǎn)橢圓上的一動(dòng)點(diǎn),且的最小值是1,得,因?yàn)楫?dāng)垂直長(zhǎng)軸時(shí),可得,所以,即,又由,解得,所以橢圓的標(biāo)準(zhǔn)方程為.(2)由題意知切線的斜率一定存在,否則不能形成,設(shè)切線的方程為,聯(lián)立,整理得,因?yàn)橹本€與橢圓相切,所以,化簡(jiǎn)得,則,因?yàn)辄c(diǎn)到直線的距離,所以,即,故的面積為,因?yàn)?,可得,即,函?shù)在上單調(diào)遞增,所以,當(dāng)時(shí)取等號(hào),則,即面積的最大值為.當(dāng)時(shí),此時(shí),所以直線的方程為.【點(diǎn)睛】對(duì)于直線與橢圓的位置關(guān)系的處理方法:1、判定與應(yīng)用直線與橢圓的位置關(guān)系,一把轉(zhuǎn)化為研究直線方程與橢圓組成的方程組的解得個(gè)數(shù),結(jié)合判別式求解;2、對(duì)于過(guò)定點(diǎn)的直線,也可以通過(guò)定點(diǎn)在橢圓的內(nèi)部或在橢圓上,判定直線與橢圓的位置關(guān)系.20、(1)或;(2)【解析】(1)由方程有實(shí)數(shù)根則,可求出實(shí)數(shù)的取值范圍.(2)為真命題,即從而得出的取值范圍,由(1)可得出為假命題時(shí)實(shí)數(shù)的取值范圍.即可得出答案.【詳解】解:(1)方程有實(shí)數(shù)解得,,解之得或;(2)為假命題,則,為真命題時(shí),,,則故.故為假命題且為真命題時(shí),.【點(diǎn)睛】本題考查命題為真時(shí)求參數(shù)的范圍和兩個(gè)命題同時(shí)滿足條件時(shí),求參數(shù)的范圍,屬于基礎(chǔ)題.21、(1)證明見(jiàn)解析(2)【解析】(1)取的中點(diǎn),連接,證明,由線面垂直的判定定理可證明平面,再利用面面垂直的判定定理可證得結(jié)論,(2)過(guò)點(diǎn)作于,以為原點(diǎn),建立空間直角坐標(biāo)系,如圖所示,設(shè),先根據(jù)直線BC與平面PCD所成角的正弦值為,求出,然后再求出平面PAB的法向量,利用向量的夾角公式可求得結(jié)果【小問(wèn)1詳解】證明:取的中點(diǎn),連接,因?yàn)锳D//BC,AB=BC=CD=1,AD=2,所以,∥,所以四邊形為平行四邊形,所以,所以,因?yàn)槠矫?,平面,所以,因?yàn)?,所以平面,因?yàn)槠矫?,所以平面平面,【?/p>
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年03月山西浦發(fā)銀行太原分行招考筆試歷年參考題庫(kù)附帶答案詳解
- 個(gè)人工作自我鑒定10篇
- 專(zhuān)業(yè)求職信集錦6篇
- 2025年上門(mén)服務(wù)項(xiàng)目規(guī)劃申請(qǐng)報(bào)告模范
- 無(wú)償獻(xiàn)血倡議書(shū)匯編15篇
- 2025年污水自動(dòng)采樣器項(xiàng)目立項(xiàng)申請(qǐng)報(bào)告模范
- 中職畢業(yè)學(xué)生自我鑒定
- 2022知危險(xiǎn)會(huì)避險(xiǎn)交通安全課觀后感(范文10篇)
- 競(jìng)選大隊(duì)委演講稿模板八篇
- 《小海蒂》讀書(shū)筆記15篇
- 地 理世界的聚落 課件-2024-2025學(xué)年七年級(jí)地理上學(xué)期(湘教版2024)
- 建筑施工安全檢查標(biāo)準(zhǔn)JGJ59-2011
- (完整)注冊(cè)安全工程師考試題庫(kù)(含答案)
- 2024秋期國(guó)家開(kāi)放大學(xué)《可編程控制器應(yīng)用實(shí)訓(xùn)》一平臺(tái)在線形考(形成任務(wù)7)試題及答案
- 虛假信息的傳播與倫理
- 國(guó)家開(kāi)放大學(xué)《創(chuàng)建小企業(yè)》形考任務(wù)1-4參考答案
- 化工(危險(xiǎn)化學(xué)品)企業(yè)主要負(fù)責(zé)人、安管員安全生產(chǎn)管理專(zhuān)項(xiàng)培訓(xùn)考核試卷(附參考答案)
- 蘇教版七年級(jí)歷史知識(shí)點(diǎn)
- 陜西省既有村鎮(zhèn)住宅抗震加固技術(shù)規(guī)程
- 人教版美術(shù)五年級(jí)上冊(cè)《第2課 色彩的和諧》說(shuō)課稿2
- 2024年6月浙江省高考?xì)v史試卷(真題+答案)
評(píng)論
0/150
提交評(píng)論