版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆上海市楊浦區(qū)市級名校高二數(shù)學第一學期期末聯(lián)考模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.下列函數(shù)求導運算正確的個數(shù)為()①;②;③;④.A.1 B.2C.3 D.42.雙曲線的焦距是()A.4 B.C.8 D.3.已知直線l1:ax+2y=0與直線l2:2x+(2a+2)y+1=0垂直,則實數(shù)a的值為()A.﹣2 B.C.1 D.1或﹣24.如圖,在正方體中,是側面內一動點,若到直線與直線的距離相等,則動點的軌跡所在的曲線是()A.直線 B.圓C.雙曲線 D.拋物線5.在正方體中,為棱的中點,則異面直線與所成角的正切值為A. B.C. D.6.已知雙曲線,過點作直線l與雙曲線交于A,B兩點,則能使點P為線段AB中點的直線l的條數(shù)為()A.0 B.1C.2 D.37.已知雙曲線的實軸長為10,則該雙曲線的漸近線的斜率為()A. B.C. D.8.已知圓,圓C2:x2+y2-x-4y+7=0,則“a=1”是“兩圓內切”的()A.充分必要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件9.設、是向量,命題“若,則”的逆否命題是()A.若,則 B.若,則C.若,則 D.若,則10.過拋物線的焦點作互相垂直的弦,則的最小值為()A.16 B.18C.32 D.6411.“”是“曲線為焦點在軸上的橢圓”的A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必要條件12.在等比數(shù)列中,,則的公比為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)單調增區(qū)間為______.14.已知數(shù)列滿足,則的前20項和___________.15.若雙曲線的漸近線為,則其離心率的值為_______.16.拋物線的準線方程為_____三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知直線l過定點(1)若直線l與直線垂直,求直線l的方程;(2)若直線l在兩坐標軸上的截距相等,求直線l的方程18.(12分)如圖,正方體的棱長為4,E,F(xiàn)分別是上的點,且.(1)求與平面所成角的正切值;(2)求證:.19.(12分)已知函數(shù),求(1)(2)(3)曲線在處的切線方程20.(12分)《中華人民共和國道路交通安全法》第47條的相關規(guī)定:機動車行經人行橫道時,應當減速慢行;遇行人正在通過人行橫道,應當停車讓行,俗稱“禮讓斑馬線”,其中第90條規(guī)定:對不禮讓行人的駕駛員處以扣3分,罰款50元的處罰.下表是某市一主干路口監(jiān)控設備所抓拍的5個月內駕駛員不“禮讓斑馬線”行為統(tǒng)計數(shù)據(jù):參考公式:,月份12345違章駕駛員人數(shù)1201051009580(1)請利用所給數(shù)據(jù)求違章人數(shù)y與月份x之間的回歸直線方程;(2)預測該路口10月份的不“禮讓斑馬線”違章駕駛員人數(shù);21.(12分)在直角坐標系中,點到兩點、的距離之和等于,設點的軌跡為,直線與交于、兩點(1)求曲線的方程;(2)若,求的值22.(10分)已知數(shù)列是遞增的等差數(shù)列,,若成等比數(shù)列.(1)求數(shù)列的通項公式;(2)若,數(shù)列的前項和,求.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù)導數(shù)的運算法則和導數(shù)的基本公式計算后即可判斷【詳解】解:①,故錯誤;②,故正確;③,故錯誤;④,故錯誤.所以求導運算正確的個數(shù)為1.故選:A.2、C【解析】根據(jù),先求半焦距,再求焦距即可.【詳解】解:由題意可得,,∴,故選:C【點睛】考查求雙曲線的焦距,基礎題.3、B【解析】由題意,利用兩直線垂直的性質,兩直線垂直時,一次項對應系數(shù)之積的和等于0,計算求得a的值【詳解】∵直線l1:ax+2y=0與直線l2:2x+(2a+2)y+1=0垂直,∴a×2+2×(2a+2)=0,求得a=﹣,故選:B4、D【解析】由到直線的距離等于到點的距離可得到直線的距離等于到點的距離,然后可得答案.【詳解】因為到直線的距離等于到點的距離,所以到直線的距離等于到點的距離,所以動點的軌跡是以為焦點、為準線的拋物線故選:D5、C【解析】利用正方體中,,將問題轉化為求共面直線與所成角的正切值,在中進行計算即可.【詳解】在正方體中,,所以異面直線與所成角為,設正方體邊長為,則由為棱的中點,可得,所以,則.故選C.【點睛】求異面直線所成角主要有以下兩種方法:(1)幾何法:①平移兩直線中的一條或兩條,到一個平面中;②利用邊角關系,找到(或構造)所求角所在的三角形;③求出三邊或三邊比例關系,用余弦定理求角;(2)向量法:①求兩直線的方向向量;②求兩向量夾角的余弦;③因為直線夾角為銳角,所以②對應的余弦取絕對值即為直線所成角的余弦值.6、A【解析】先假設存在這樣的直線,分斜率存在和斜率不存在設出直線的方程,當斜率k存在時,與雙曲線方程聯(lián)立,消去,得到關于的一元二次方程,直線與雙曲線相交于兩個不同點,則,,又根據(jù)是線段的中點,則,由此求出與矛盾,故不存在這樣的直線滿足題意;當斜率不存在時,過點的直線不滿足條件,故符合條件的直線不存在.詳解】設過點的直線方程為或,①當斜率存在時有,得(*)當直線與雙曲線相交于兩個不同點,則必有:,即又方程(*)的兩個不同的根是兩交點、的橫坐標,又為線段的中點,,即,,使但使,因此當時,方程①無實數(shù)解故過點與雙曲線交于兩點、且為線段中點的直線不存在②當時,經過點的直線不滿足條件.綜上,符合條件的直線不存在故選:A7、B【解析】利用雙曲線的實軸長為,求出,即可求出該雙曲線的漸近線的斜率.【詳解】由題意,,所以,,所以雙曲線的漸近線的斜率為.故選:B.【點睛】本題考查雙曲線的方程與性質,考查學生的計算能力,屬于基礎題.8、B【解析】先得出圓的圓心和半徑,求出兩圓心間的距離,半徑之差,根據(jù)兩圓內切得出方程,從而得出答案.【詳解】圓的圓心半徑的圓心半徑兩圓心之間的距離為兩圓的半徑之差為當兩圓內切時,,解得或所以當,可得兩圓內切,當兩圓內切時,不能得出(可能)故“”是“兩圓內切”的充分不必要條件故選:B9、C【解析】利用原命題與逆否命題之間的關系可得結論.【詳解】由原命題與逆否命題之間的關系可知,命題“若,則”的逆否命題是“若,則”.故選:C.10、B【解析】根據(jù)拋物線方程求出焦點坐標,分別設出,所在直線方程,與拋物線方程聯(lián)立,利用根與系數(shù)的關系及弦長公式求得,,然后利用基本不等式求最值.【詳解】拋物線的焦點,設直線的直線方程為,則直線的方程為.,,,.由,得,,同理可得..當且僅當,即時取等號.所以的最小值為.故選:B11、C【解析】∵“”?“方程表示焦點在軸上的橢圓”,“方程表示焦點在軸上的橢圓”?“”,∴“”是“方程表示焦點在軸上的橢圓”的充要條件,故選C.12、D【解析】利用等比數(shù)列的性質把方程都變成和有關的式子后進行求解.【詳解】由等比數(shù)列的等比中項性質可得,又,所以,因,所以,所以,故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用導數(shù)法求解.【詳解】因為函數(shù),所以,當時,,所以的單調增區(qū)間是,故答案為:14、135【解析】直接利用數(shù)列的遞推關系式寫出相鄰四項之和,進而求出數(shù)列的和.【詳解】數(shù)列滿足,所以,故,當時,,當時,,,當時,,所以.故答案為:135.15、【解析】利用漸近線斜率為和雙曲線的關系可構造關于的齊次方程,進而求得結果.【詳解】由漸近線方程可知:,即,,,(負值舍掉).故答案為:.【點睛】本題考查根據(jù)雙曲線漸近線方程求解離心率的問題,關鍵是利用漸進線的斜率構造關于的齊次方程.16、【解析】本題利用拋物線的標準方程得出拋物線的準線方程【詳解】由拋物線方程可知,拋物線的準線方程為:故答案為【點睛】本題考查拋物線的相關性質,主要考查拋物線的簡單性質的應用,考查拋物線的準線的確定,是基礎題三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)或【解析】(1)求出直線的斜率可得l的斜率,再借助直線點斜式方程即可得解.(2)按直線l是否過原點分類討論計算作答.【小問1詳解】直線的斜率為,于是得直線l的斜率,則,即,所以直線l的方程是:.【小問2詳解】因直線l在兩坐標軸上的截距相等,則當直線l過原點時,直線l的方程為:,即,當直線l不過原點時,設其方程為:,則有,解得,此時,直線l的方程為:,所以直線l的方程為:或.18、(1);(2)證明見解析.【解析】(1)在正方體中,平面,連接,則為與平面所成的角,在直角三角形,求出即可;(2)∵是正方體,又是空間垂直問題,∴易采用向量法,∴建立如圖所示的空間直角坐標系,欲證,只須證,再用向量數(shù)量積公式求解即可.【小問1詳解】在正方體中,平面,連接,則為與平面所成的角,又,,,∴;【小問2詳解】如圖,以為坐標原點,直線、、分別軸、軸、軸,建立空間直角坐標系.則∴,,∴,∴.19、(1)(2)(3)y=【解析】(1)由導數(shù)的運算法則求解即可;(2)利用導函數(shù)計算即可;(3)由導數(shù)的幾何意義得出切線方程.【小問1詳解】【小問2詳解】【小問3詳解】當時,f(x)=0,則切點為所以切線方程是,即y=20、(1);(2)37【解析】(1)將題干數(shù)據(jù)代入公式求出與,進而求出回歸直線方程;(2)再第一問的基礎上代入求出結果.【小問1詳解】,,則,,所以回歸直線方程;【小問2詳解】令得:,故該路口10月份的不“禮讓斑馬線”違章駕駛員人數(shù)為37.21、(1);(2).【解析】(1)本題可根據(jù)橢圓的定義求出點的軌跡;(2)本題首先可設、,然后聯(lián)立橢圓與直線方程,通過韋達定理得出、,最后通過得出,代入、的值并計算,即可得出結果.【詳解】(1)因為點到兩點、的距離之和等于,所以結合橢圓定義易知,點的軌跡是以點、為焦點且的橢圓,則,,,點的軌跡.(2)設,,聯(lián)立,整理得,則,,因為,所以,即,整理得,則,整理得,解得.【點睛】關鍵點點睛:本題考查根據(jù)橢圓定義求動點軌跡以及直線與拋物線相關問題的求解,橢圓的定義為動點到兩個定點的距離為一個固定的常數(shù),考查韋達定理的應用,考查計算能力,是難題.22、(1);(2).【解析】(1)設等差數(shù)列的公差為,根據(jù)題意列出方程組
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 去健身房鍛煉身體的說說范文
- 2025年粵教新版九年級歷史上冊月考試卷含答案
- 2025年華師大新版八年級物理下冊月考試卷含答案
- 2025年新世紀版選擇性必修二化學下冊月考試卷
- 2025年滬科新版九年級地理下冊月考試卷含答案
- 2025年湘師大新版必修2歷史上冊階段測試試卷
- 2025年華東師大版九年級科學上冊階段測試試卷含答案
- 2025年外研版八年級歷史上冊階段測試試卷
- 2025年粵教版必修1語文上冊階段測試試卷
- 2025年北師大版選修2地理上冊月考試卷含答案
- 安檢人員培訓
- 山東省濰坊市2024-2025學年高三上學期1月期末 英語試題
- 危險性較大分部分項工程及施工現(xiàn)場易發(fā)生重大事故的部位、環(huán)節(jié)的預防監(jiān)控措施
- 《榜樣9》觀后感心得體會四
- 2023事業(yè)單位筆試《公共基礎知識》備考題庫(含答案)
- 化學-廣東省廣州市2024-2025學年高一上學期期末檢測卷(一)試題和答案
- 2025四川中煙招聘高頻重點提升(共500題)附帶答案詳解
- EHS工程師招聘筆試題與參考答案(某大型央企)2024年
- 營銷策劃 -麗亭酒店品牌年度傳播規(guī)劃方案
- 2025年中國蛋糕行業(yè)市場規(guī)模及發(fā)展前景研究報告(智研咨詢發(fā)布)
- 潤滑油過濾培訓
評論
0/150
提交評論