2024屆浙江省名校新高二數(shù)學(xué)第一學(xué)期期末預(yù)測(cè)試題含解析_第1頁(yè)
2024屆浙江省名校新高二數(shù)學(xué)第一學(xué)期期末預(yù)測(cè)試題含解析_第2頁(yè)
2024屆浙江省名校新高二數(shù)學(xué)第一學(xué)期期末預(yù)測(cè)試題含解析_第3頁(yè)
2024屆浙江省名校新高二數(shù)學(xué)第一學(xué)期期末預(yù)測(cè)試題含解析_第4頁(yè)
2024屆浙江省名校新高二數(shù)學(xué)第一學(xué)期期末預(yù)測(cè)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩12頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆浙江省名校新高二數(shù)學(xué)第一學(xué)期期末預(yù)測(cè)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.從直線上動(dòng)點(diǎn)作圓的兩條切線,切點(diǎn)分別為、,則最大時(shí),四邊形(為坐標(biāo)原點(diǎn))面積是()A. B.C. D.2.已知橢圓及以下3個(gè)函數(shù):①;②;③,其中函數(shù)圖象能等分該橢圓面積的函數(shù)個(gè)數(shù)有()A.0個(gè) B.1個(gè)C.2個(gè) D.3個(gè)3.已知為等比數(shù)列的前n項(xiàng)和,,,則()A.30 B.C. D.30或4.如圖,在正方體中,點(diǎn),分別是面對(duì)角線與的中點(diǎn),若,,,則()A. B.C. D.5.在平行六面體ABCD﹣A1B1C1D1中,AC與BD的交點(diǎn)為M,設(shè)=,=,=,則=()A.++ B.+C.++ D.+6.中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若,則等于()A. B.C. D.7.已知雙曲線=1的一條漸近線方程為x-4y=0,其虛軸長(zhǎng)為()A.16 B.8C.2 D.18.直三棱柱ABC-A1B1C1中,△ABC為等邊三角形,AA1=AB,M是A1C1的中點(diǎn),則AM與平面所成角的正弦值為()A. B.C. D.9.已知等比數(shù)列的各項(xiàng)均為正數(shù),且,則()A. B.C. D.10.雙曲線(,)的一條漸近線的傾斜角為,則離心率為()A. B.C.2 D.411.已知雙曲線的焦點(diǎn)在y軸上,且實(shí)半軸長(zhǎng)為4,虛半軸長(zhǎng)為5,則雙曲線的標(biāo)準(zhǔn)方程為()A.=1 B.=1C.=1 D.=112.設(shè)等差數(shù)列的前n項(xiàng)和為,且,則()A.64 B.72C.80 D.144二、填空題:本題共4小題,每小題5分,共20分。13.若函數(shù)在區(qū)間上單調(diào)遞減,則實(shí)數(shù)的取值范圍是____________.14.若向量滿足,則_________.15.已知雙曲線與橢圓有公共的左、右焦點(diǎn)分別為,,以線段為直徑的圓與雙曲線C及其漸近線在第一象限內(nèi)分別交于M,N兩點(diǎn),且線段的中點(diǎn)在另一條漸近線上,則的面積為___________.16.圓錐的高為1,底面半徑為,則過(guò)圓錐頂點(diǎn)的截面面積的最大值為____________三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知復(fù)數(shù),其中i是虛數(shù)單位,m為實(shí)數(shù)(1)當(dāng)復(fù)數(shù)z為純虛數(shù)時(shí),求m的值;(2)當(dāng)復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于第三象限時(shí),求m的取值范圍18.(12分)已知滿足,.(1)求證:是等差數(shù)列,求的通項(xiàng)公式;(2)若,的前項(xiàng)和是,求證:.19.(12分)已知橢圓的離心率是,且過(guò)點(diǎn).(1)求橢圓的標(biāo)準(zhǔn)方程;(2)若直線與橢圓交于A、B兩點(diǎn),線段的中點(diǎn)為,為坐標(biāo)原點(diǎn),且,求面積的最大值.20.(12分)已知等比數(shù)列的首項(xiàng),公比,在中每相鄰兩項(xiàng)之間都插入3個(gè)正數(shù),使它們和原數(shù)列的數(shù)一起構(gòu)成一個(gè)新的等比數(shù)列.(1)求數(shù)列的通項(xiàng)公式;(2)記數(shù)列前n項(xiàng)的乘積為,試問(wèn):是否有最大值?如果是,請(qǐng)求出此時(shí)n以及最大值;若不是,請(qǐng)說(shuō)明理由.21.(12分)已知函數(shù).(1)求函數(shù)在處的切線方程;(2)求函數(shù)在區(qū)間上的最大值與最小值.22.(10分)已知橢圓的離心率為,直線與橢圓C相切于點(diǎn)(1)求橢圓C的方程;(2)已知直線與橢圓C交于不同的兩點(diǎn)M,N,與直線交于點(diǎn)Q(P,Q,M,N均不重合),記的斜率分別為,若.證明:為定值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】分析可知當(dāng)時(shí),最大,計(jì)算出、,進(jìn)而可計(jì)算得出四邊形(為坐標(biāo)原點(diǎn))面積.【詳解】圓的圓心為坐標(biāo)原點(diǎn),連接、、,則,設(shè),則,,則,當(dāng)取最小值時(shí),,此時(shí),,,,故,此時(shí),.故選:B.2、C【解析】由橢圓的幾何性質(zhì)可得橢圓的圖像關(guān)于原點(diǎn)對(duì)稱,因?yàn)楹瘮?shù),函數(shù)為奇函數(shù),其圖像關(guān)于原點(diǎn)對(duì)稱,則①②滿足題意,對(duì)于函數(shù)在軸右側(cè)時(shí),,只有時(shí),,即函數(shù)在軸右側(cè)的圖像顯然不能等分橢圓在軸右側(cè)的圖像的面積,又函數(shù)為偶函數(shù),其圖像關(guān)于軸對(duì)稱,則函數(shù)在軸左側(cè)的圖像顯然也不能等分橢圓在軸左側(cè)的圖像的面積,即函數(shù)的圖像不能等分該橢圓面積,得解.【詳解】解:因?yàn)闄E圓的圖像關(guān)于原點(diǎn)對(duì)稱,對(duì)于①,函數(shù)為奇函數(shù),其圖像關(guān)于原點(diǎn)對(duì)稱,即可知的圖象能等分該橢圓面積;對(duì)于②,函數(shù)為奇函數(shù),其圖像關(guān)于原點(diǎn)對(duì)稱,即可知的圖象能等分該橢圓面積;對(duì)于③,對(duì)于函數(shù)在軸右側(cè)時(shí),,只有時(shí),,即函數(shù)在軸右側(cè)的圖像(如圖)顯然不能等分橢圓在軸右側(cè)的圖像的面積,又函數(shù)為偶函數(shù),其圖像關(guān)于軸對(duì)稱,則函數(shù)在軸左側(cè)的圖像顯然也不能等分橢圓在軸左側(cè)的圖像的面積,即函數(shù)的圖像不能等分該橢圓面積,即函數(shù)圖象能等分該橢圓面積的函數(shù)個(gè)數(shù)有2個(gè),故選C.【點(diǎn)睛】本題考查了橢圓的幾何性質(zhì)、函數(shù)的奇偶性及函數(shù)的對(duì)稱性,重點(diǎn)考查了函數(shù)的性質(zhì),屬基礎(chǔ)題.3、A【解析】利用等比數(shù)列基本量代換代入,列方程組,即可求解.【詳解】由得,則等比數(shù)列的公比,則得,令,則即,解得或(舍去),,則故選:A4、D【解析】由空間向量運(yùn)算法則得,利用向量的線性運(yùn)算求出結(jié)果.【詳解】因?yàn)辄c(diǎn),分別是面對(duì)角線與的中點(diǎn),,,,所以故選:D.5、B【解析】利用向量三角形法則、平行四邊形法則、向量共線定理即可得出【詳解】如圖所示,∵=+,又=,=-,=,∴=+,故選:B6、A【解析】由題得,進(jìn)而根據(jù)余弦定理求解即可.【詳解】解:依題意,即,所以,所以,由于,所以故選:A7、C【解析】根據(jù)雙曲線的漸近線方程的特點(diǎn),結(jié)合虛軸長(zhǎng)的定義進(jìn)行求解即可.【詳解】因?yàn)殡p曲線=1的一條漸近線方程為x-4y=0,所以,因此該雙曲線的虛軸長(zhǎng)為,故選:C8、B【解析】取的中點(diǎn),以為原點(diǎn),所在直線分別為x軸、y軸、z軸,建立空間直角坐標(biāo)系,即可根據(jù)線面角的向量公式求出【詳解】如圖所示,取的中點(diǎn),以為原點(diǎn),所在直線分別為x軸、y軸、z軸,建立空間直角坐標(biāo)系,不妨設(shè),則,所以,平面的一個(gè)法向量為設(shè)AM與平面所成角為,向量與所成的角為,所以,即AM與平面所成角的正弦值為故選:B9、B【解析】利用對(duì)數(shù)的運(yùn)算性質(zhì),結(jié)合等比數(shù)列的性質(zhì)可求得結(jié)果.【詳解】是各項(xiàng)均為正數(shù)的等比數(shù)列,,,,.故選:B10、C【解析】根據(jù)雙曲線方程寫出漸近線方程,得出,進(jìn)而可求出雙曲線的離心率.【詳解】因?yàn)殡p曲線的漸近線方程為,又其中一條漸近線的傾斜角為,所以,則,所以該雙曲線離心率為.故選:C.11、D【解析】根據(jù)雙曲線的性質(zhì)求解即可.【詳解】雙曲線的焦點(diǎn)在y軸上,且實(shí)半軸長(zhǎng)為4,虛半軸長(zhǎng)為5,可得a=4,b=5,所以雙曲線方程為:=1.故選:D.12、B【解析】利用等差數(shù)列下標(biāo)和性質(zhì),求得,再用等差數(shù)列前項(xiàng)和公式即可求解.【詳解】根據(jù)等差數(shù)列的下標(biāo)和性質(zhì),,解得,.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】求解定義域,由導(dǎo)函數(shù)小于0得到遞減區(qū)間,進(jìn)而得到不等式組,求出實(shí)數(shù)的取值范圍.【詳解】顯然,且,由,以及考慮定義域x>0,解得:.在區(qū)間,上單調(diào)遞減,∴,解得:.故答案為:14、【解析】根據(jù)題目條件,利用模的平方可以得出答案【詳解】∵∴∴.故答案為:.15、【解析】求出橢圓焦點(diǎn)坐標(biāo),即雙曲線焦點(diǎn)坐標(biāo),即雙曲線的半焦距,再求出點(diǎn)坐標(biāo),利用中點(diǎn)在漸近線上得出的關(guān)系式,從而求得,然后可計(jì)算面積【詳解】由題意橢圓中,即,以線段為直徑的圓的方程為,由,解得(取第一象限交點(diǎn)坐標(biāo)),,雙曲線的不在第一象限的漸近線方程為,,的中點(diǎn)坐標(biāo)為,它在漸近線上,所以,化簡(jiǎn)得,又,所以,雙曲線方程為,則得,所以故答案為:16、2【解析】求出圓錐軸截面頂角大小,判斷并求出所求面積最大值【詳解】如圖,是圓錐軸截面,是一條母線,設(shè)軸截面頂角為,因?yàn)閳A錐的高為1,底面半徑為,所以,,所以,,設(shè)圓錐母線長(zhǎng)為,則,截面的面積為,因?yàn)?,所以時(shí),故答案為:2三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)4(2)【解析】(1)根據(jù)純虛數(shù),實(shí)部為零,虛部不為零列式即可;(2)根據(jù)第三象限,實(shí)部小于零,虛部小于零,列式即可.【小問(wèn)1詳解】因?yàn)闉榧兲摂?shù),所以解得或,且且綜上可得,當(dāng)為純虛數(shù)時(shí);【小問(wèn)2詳解】因?yàn)樵趶?fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于第三象限,解得或,且即,故的取值范圍為.18、(1)證明見解析,(2)證明見解析【解析】(1)在等式兩邊同時(shí)除以,結(jié)合等差數(shù)列的定義可證得數(shù)列為等差數(shù)列,確定該數(shù)列的首項(xiàng)和公差,可求得的表達(dá)式;(2)求得,利用裂項(xiàng)相消法求得,即可證得原不等式成立.【小問(wèn)1詳解】解:在等式兩邊同時(shí)除以可得且,所以,數(shù)列是以為首項(xiàng),以為公差的等差數(shù)列,則,因此,.【小問(wèn)2詳解】證明:,所以,.故原不等式得證.19、(1);(2)2.【解析】(1)根據(jù)已知條件列出關(guān)于a、b、c的方程組即可求得橢圓標(biāo)準(zhǔn)方程;(2)直線l和x軸垂直時(shí),根據(jù)已知條件求出此時(shí)△AOB面積;直線l和x軸不垂直時(shí),設(shè)直線方程為點(diǎn)斜式y(tǒng)=kx+t,代入橢圓方程得二次方程,結(jié)合韋達(dá)定理和弦長(zhǎng)得k和t關(guān)系,表示出△AOB的面積,結(jié)合基本不等式即可求解三角形面積最值.【小問(wèn)1詳解】由題知,解得,∴橢圓的標(biāo)準(zhǔn)方程為.【小問(wèn)2詳解】當(dāng)軸時(shí),位于軸上,且,由可得,此時(shí);當(dāng)不垂直軸時(shí),設(shè)直線的方程為,與橢圓交于,,由,得.得,,從而已知,可得.∵.設(shè)到直線的距離為,則,結(jié)合化簡(jiǎn)得此時(shí)的面積最大,最大值為2.當(dāng)且僅當(dāng)即時(shí)取等號(hào),綜上,的面積的最大值為2.20、(1)(2)當(dāng)或時(shí),有最大值.【解析】(1)利用等比數(shù)列通項(xiàng)公式求解即可;(2)求出數(shù)列的前n項(xiàng)的乘積為,利用二次函數(shù)的性質(zhì)求最值即可.【小問(wèn)1詳解】由已知得,數(shù)列首項(xiàng),,設(shè)數(shù)列的公比為,即∴即,【小問(wèn)2詳解】,即當(dāng)或5時(shí),有最大值.21、(1)(2),【解析】(1)根據(jù)導(dǎo)數(shù)的幾何意義即可求解;(2)根據(jù)導(dǎo)數(shù)的正負(fù)判斷f(x)的單調(diào)性,根據(jù)其單調(diào)性即可求最大值和最小值.【小問(wèn)1詳解】,切點(diǎn)為(1,-2),∵,∴切線斜率,切線方程為;【小問(wèn)2詳解】令,解得,1200極大值極小值2∵,,∴當(dāng)時(shí),,.22、(1);(2)證明見解析.【解析】(1)根據(jù)橢圓離心率和橢圓經(jīng)過(guò)的點(diǎn)建立方程組,求解方程組可得橢圓的方程;(2)先根據(jù)相切求出

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論