安徽省安大附中2023-2024學年高二上數(shù)學期末質量跟蹤監(jiān)視模擬試題含解析_第1頁
安徽省安大附中2023-2024學年高二上數(shù)學期末質量跟蹤監(jiān)視模擬試題含解析_第2頁
安徽省安大附中2023-2024學年高二上數(shù)學期末質量跟蹤監(jiān)視模擬試題含解析_第3頁
安徽省安大附中2023-2024學年高二上數(shù)學期末質量跟蹤監(jiān)視模擬試題含解析_第4頁
安徽省安大附中2023-2024學年高二上數(shù)學期末質量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

安徽省安大附中2023-2024學年高二上數(shù)學期末質量跟蹤監(jiān)視模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若,則()A.1 B.2C.4 D.82.數(shù)列是等比數(shù)列,是其前n項之積,若,則的值是()A.1024 B.256C.2 D.5123.如下圖,面與面所成二面角的大小為,且A,B為其棱上兩點.直線AC,BD分別在這個二面角的兩個半平面中,且都垂直于AB,已知,,,則()A. B.C. D.4.若函數(shù)在定義域上單調(diào)遞增,則實數(shù)的取值范圍為()A. B.C. D.5.在數(shù)列中,,,,則()A.2 B.C. D.16.雙曲線:的實軸長為()A. B.C.4 D.27.命題“,”的否定形式是()A.“,” B.“,”C.“,” D.“,”8.已知數(shù)列滿足,且,則的值為()A.3 B.C. D.9.函數(shù)為的導函數(shù),令,則下列關系正確的是()A. B.C. D.10.已知F1(-1,0),F(xiàn)2(1,0)是橢圓的兩個焦點,過F1的直線l交橢圓于M,N兩點,若△MF2N的周長為8,則橢圓方程為()A. B.C. D.11.已知,,,執(zhí)行如圖所示的程序框圖,輸出的值為()A. B.C. D.12.圓的圓心坐標與半徑分別是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.給出下列命題:①若兩條不同的直線同時垂直于第三條直線,則這兩條直線互相平行;②若兩個不同的平面同時垂直于同一條直線,則這兩個平面互相平行;③若兩條不同的直線同時垂直于同一個平面,則這兩條直線互相平行;④若兩個不同的平面同時垂直于第三個平面,則這兩個平面互相垂直.其中所有正確命題的序號為________.14.在公差不為0的等差數(shù)列中,為其前n項和,若,則正整數(shù)______15.已知函數(shù)在處有極值2,則______.16.直線過點,且原點到直線l的距離為,則直線方程是______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),滿足,已知點是曲線上任意一點,曲線在處的切線為.(1)求切線的傾斜角的取值范圍;(2)若過點可作曲線的三條切線,求實數(shù)的取值范圍.18.(12分)在平面直角坐標系中,動點到直線的距離與到點的距離之差為.(1)求動點的軌跡的方程;(2)過點的直線與交于、兩點,若的面積為,求直線的方程.19.(12分)已知函數(shù).若圖象上的點處的切線斜率為(1)求a,b的值;(2)的極值20.(12分)如圖,在長方體中,,若點P為棱上一點,且,Q,R分別為棱上的點,且.(1)求直線與平面所成角的正弦值;(2)求平面與平面的夾角的余弦值.21.(12分)在數(shù)列中,,且成等比數(shù)列(1)證明數(shù)列是等差數(shù)列,并求的通項公式;(2)設數(shù)列滿足,其前項和為,證明:22.(10分)已知函數(shù),.(1)若在單調(diào)遞增,求的取值范圍;(2)若,求證:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由題意結合導數(shù)的運算可得,再由導數(shù)的概念即可得解.【詳解】由題意,所以,所以.故選:D.2、D【解析】設數(shù)列的公比為q,由已知建立方程求得q,再利用等比數(shù)列的通項公式可求得答案.【詳解】解:因為數(shù)列是等比數(shù)列,是其前n項之積,,設數(shù)列的公比為q,所以,解得,所以,故選:D.3、B【解析】根據(jù)題意,作,且,則四邊形ABDE為平行四邊形,進一步判斷出該四邊形為矩形,然后確定出為二面角的平面角,進而通過余弦定理和勾股定理求得答案.【詳解】如圖,作,且,則四邊形ABDE為平行四邊形,所以.因為,所以,又,所以是該二面角的一個平面角,即,由余弦定理.因為,,所以,易得四邊形ABDE為矩形,則,而,所以平面ACE,則,于是.故選:B.4、D【解析】函數(shù)在定義域上單調(diào)遞增等價于在上恒成立,即在上恒成立,然后易得,最后求出范圍即可.【詳解】函數(shù)的定義域為,,在定義域上單調(diào)遞增等價于在上恒成立,即在上恒成立,即在上恒成立,分離參數(shù)得,所以,即.【點睛】方法點睛:已知函數(shù)的單調(diào)性求參數(shù)的取值范圍的通解:若在區(qū)間上單調(diào)遞增,則在區(qū)間上恒成立;若在區(qū)間上單調(diào)遞減,則在區(qū)間上恒成立;然后再利用分離參數(shù)求得參數(shù)的取值范圍即可.5、A【解析】根據(jù)題中條件,逐項計算,即可得出結果.【詳解】因為,,,所以,因此.故選:A.6、A【解析】根據(jù)雙曲線的幾何意義即可得到結果.【詳解】因為雙曲線的實軸長為2a,而雙曲線中,,所以其實軸長為故選:A7、C【解析】由全稱命題的否定是特稱命題即得.【詳解】“任意”改為“存在”,否定結論即可.命題“,”的否定形式是“,”.故選:C.8、B【解析】根據(jù)題意,依次求出,觀察規(guī)律,進而求出數(shù)列的周期,然后通過周期性求得答案.【詳解】因為數(shù)列滿足,,所以,所以,,,可知數(shù)列具有周期性,周期為3,,所以.故選:B9、B【解析】求導后,令,可求得,再利用導數(shù)可得為減函數(shù),比較的大小后,根據(jù)為減函數(shù)可得答案.【詳解】由題意得,,,解得,所以所以,所以為減函數(shù)因為,所以,故選:B【點睛】關鍵點點睛:比較大小的關鍵是知道的單調(diào)性,利用導數(shù)可得的單調(diào)性.10、A【解析】由題得c=1,再根據(jù)△MF2N的周長=4a=8得a=2,進而求出b的值得解.【詳解】∵F1(-1,0),F(xiàn)2(1,0)是橢圓的兩個焦點,∴c=1,又根據(jù)橢圓的定義,△MF2N的周長=4a=8,得a=2,進而得b=,所以橢圓方程為.故答案為A【點睛】本題主要考查橢圓的定義和橢圓方程的求法,意在考查學生對這些知識的掌握水平和分析推理能力.11、B【解析】計算出、的值,執(zhí)行程序框圖中的程序,進而可得出輸出結果.【詳解】,,則,執(zhí)行如圖所示的程序,,成立,則,不成立,輸出的值為.故選:B.12、C【解析】將圓的一般方程化為標準方程,即可得答案.【詳解】由題可知,圓的標準方程為,所以圓心為,半徑為3,故選.二、填空題:本題共4小題,每小題5分,共20分。13、②③【解析】由垂直于同一直線的兩直線的位置關系判斷①;由直線與平面垂直的性質判斷②③;由空間中平面與平面的位置關系判斷④【詳解】①若兩條不同的直線垂直于第三條直線,則這兩條直線有三種位置關系:平行、相交或異面,故錯誤;②根據(jù)線面垂直的性質知,若兩個不同的平面垂直于一條直線,則這兩個平面互相平行,故正確;③由線面垂直的性質知:若兩條不同的直線同時垂直于同一個平面,則這兩條直線互相平行,故正確④若兩個不同的平面同時垂直于第三個平面,這兩個平面相交或平行,故錯誤.其中所有正確命題的序號為②③故答案為:②③14、13【解析】設等差數(shù)列公差為d,根據(jù)等差數(shù)列通項公式、前n項和公式及可求k.【詳解】設等差數(shù)列公差為d,∵,∴,即,即,∴.故答案為:13.15、6【解析】根據(jù)函數(shù)在處有極值2,可得,解方程組即可得解.【詳解】解:,因為函數(shù)在處有極值2,所以,即,解得,則,故當時,,當時,,所以函數(shù)在處有極大值,所以,所以.故答案為:6.16、【解析】直線斜率不存在不滿足題意,即設直線的點斜式方程,再利用點到直線的距離公式,求出的值,即可求出直線方程.【詳解】①當直線斜率不存在時,顯然不滿足題意.②當直線斜率存在時,設直線為.原點到直線l的距離為,即直線方程為.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據(jù)題意求出值,求導后通過導數(shù)的值域求出斜率范圍,從而得到傾角范圍.(2)利用導數(shù)幾何意義得到過P點的切線方程,化簡后構造m的函數(shù),求新函數(shù)的極大值極小值即可.【小問1詳解】因為,則,解得,所以,則,故,,,,,切線的傾斜角的的取值范圍是,,.小問2詳解】設曲線與過點,的切線相切于點,則切線的斜率為,所以切線方程為因為點,在切線上,所以,即,由題意,該方程有三解設,則,令,解得或,當或時,,當時,,所以在和上單調(diào)遞減,在上單調(diào)遞增,故的極小值為,極大值為,所以實數(shù)的取值范圍是.18、(1);(2)或.【解析】(1)本題首先可以設動點,然后根據(jù)題意得出,通過化簡即可得出結果;(2)本題首先可排除直線斜率不存在時情況,然后設直線方程為,通過聯(lián)立方程并化簡得出,則,,再然后根據(jù)得出,最后根據(jù)的面積為即可得出結果.【詳解】(1)設動點,因為動點到直線的距離與到點的距離之差為,所以,化簡可得,故軌跡方程為.(2)當直線斜率不存在時,其方程為,此時,與只有一個交點,不符合題意,當直線斜率存在時,設其方程為,聯(lián)立方程,化簡得,,令、,則,,因為,所以,因為的面積為,所以,解得或,故直線方程為:或.【點睛】本題考查動點的軌跡方程的求法以及拋物線與直線相交的相關問題的求解,能否根據(jù)題意列出等式是求動點的軌跡方程的關鍵,考查韋達定理的應用,在計算時要注意斜率為這種情況,考查計算能力,考查轉化與化歸思想,是中檔題.19、(1)(2)極大值為,極小值為【解析】(1)求出函數(shù)的導函數(shù),再根據(jù)圖象上的點處的切線斜率為,列出方程組,解之即可得解;(2)求出函數(shù)的導函數(shù),根據(jù)導函數(shù)的符號求得函數(shù)的單調(diào)區(qū)間,再根據(jù)極值的定義即可得解.【小問1詳解】解:,,;【小問2詳解】解:由(1)得,令,得或,,-1(-1,3)3+0-0+的極大值為,極小值為.20、(1)(2)【解析】(1)建立如圖所示的空間直角坐標系,用空間向量法求線面角;(2)用空間向量法求二面角【小問1詳解】以D為坐標原點,射線方向為x,y,z軸正方向建立空間直角坐標系.當時,,所以,設平面的法向量為,所以,即不妨得,,又,所以,則【小問2詳解】在長方體中,因為平面,所以平面平面,因為平面與平面交于,因為四邊形為正方形,所以,所以平面,即為平面的一個法向量,,所以,又平面的法向量為,所以.21、(1)證明見解析;;(2)證明見解析【解析】(1)利用已知條件推出數(shù)列是等差數(shù)列,其公差為,首項為1,求出通項公式,結合由,,成等比數(shù)列,轉化求解即可.(2)化簡通項公式,利用裂項消項法,求解數(shù)列的和即可【詳解】證明:(1)由,得,即,所以數(shù)列是等差數(shù)列,其公差為,首項為1,因此,,,由成等比數(shù)列,得,即,解得或(舍去),故(2)因為,所以因為,所以【點睛】方法點睛:裂項相消法是最難把握的求和方法之一,其原因是有時很難找到裂項的方向,突破這一難點的方法是根據(jù)式子的結構特點,掌握一些常見的裂項技巧:①;②;③;④;此外,需注意裂項之后相消的過程中容易出現(xiàn)丟項或多項的問題,導致計算結果錯誤.22、(1);(2)證明見解析.【解析】(1)由函數(shù)在上單調(diào)遞增,則在上恒成立,由求解.(2)由(1)的結論,取,有,即在上恒成立,然后令,有求解.【詳解】(1)因為函數(shù)在上單調(diào)遞增,所以在上恒成立,則有在上恒成立

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論