廣東省肇慶市百花中學(xué)2024屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第1頁(yè)
廣東省肇慶市百花中學(xué)2024屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第2頁(yè)
廣東省肇慶市百花中學(xué)2024屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第3頁(yè)
廣東省肇慶市百花中學(xué)2024屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第4頁(yè)
廣東省肇慶市百花中學(xué)2024屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

廣東省肇慶市百花中學(xué)2024屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若數(shù)列為等比數(shù)列,且,,則()A.8 B.16C.32 D.642.正方體的棱長(zhǎng)為,為側(cè)面內(nèi)動(dòng)點(diǎn),且滿足,則△面積的最小值為()A. B.C. D.3.已知是偶函數(shù)的導(dǎo)函數(shù),.若時(shí),,則使得不等式成立的的取值范圍是()A. B.C. D.4.已知1與5的等差中項(xiàng)是,又1,,,8成等比數(shù)列,公比為,則的值為()A.5 B.4C.3 D.65.已知數(shù)列滿足:,數(shù)列的前n項(xiàng)和為,若恒成立,則的取值范圍是()A. B.C. D.6.設(shè)橢圓C:的左、右焦點(diǎn)分別為、,P是C上的點(diǎn),⊥,∠=,則C的離心率為A. B.C. D.7.已知點(diǎn)在橢圓上,與關(guān)于原點(diǎn)對(duì)稱,,交軸于點(diǎn),為坐標(biāo)原點(diǎn),,則橢圓的離心率為()A. B.C. D.8.已知分別是雙曲線的左、右焦點(diǎn),動(dòng)點(diǎn)P在雙曲線的左支上,點(diǎn)Q為圓上一動(dòng)點(diǎn),則的最小值為()A.6 B.7C. D.59.2018年,倫敦著名的建筑事務(wù)所steynstudio在南非完成了一個(gè)驚艷世界的作品一一雙曲線建筑的教堂,白色的波浪形屋頂像翅膀一樣漂浮,建筑師通過(guò)雙曲線的設(shè)計(jì)元素賦予了這座教堂輕盈,極簡(jiǎn)和雕塑般的氣質(zhì),如圖.若將此大教堂外形弧線的一段近似看成焦點(diǎn)在y軸上的雙曲線下支的一部分,且該雙曲線的上焦點(diǎn)到下頂點(diǎn)的距離為18,到漸近線距離為12,則此雙曲線的離心率為()A. B.C. D.10.直線l:的傾斜角為()A. B.C. D.11.函數(shù)是偶函數(shù)且在上單調(diào)遞減,,則的解集為()A. B.C. D.12.已知雙曲線的左右焦點(diǎn)分別是和,點(diǎn)關(guān)于漸近線的對(duì)稱點(diǎn)恰好落在圓上,則雙曲線的離心率為()A. B.2C. D.3二、填空題:本題共4小題,每小題5分,共20分。13.某市開(kāi)展“愛(ài)我內(nèi)蒙,愛(ài)我家鄉(xiāng)”攝影比賽,9位評(píng)委給參賽作品A打出的分?jǐn)?shù)如莖葉圖所示,記分員算得平均分為91,復(fù)核員在復(fù)核時(shí),發(fā)現(xiàn)一個(gè)數(shù)字(莖葉圖中的x)無(wú)法看清,若記分員計(jì)算無(wú)誤,則數(shù)字x應(yīng)該是______14.?dāng)?shù)學(xué)家華羅庚說(shuō):“數(shù)缺形時(shí)少直觀,形少數(shù)時(shí)難入微”,事實(shí)上,很多代數(shù)問(wèn)題可以轉(zhuǎn)化為幾何問(wèn)題加以解決.例如:與相關(guān)的代數(shù)問(wèn)題,可以轉(zhuǎn)化為點(diǎn)與點(diǎn)之間的距離的幾何問(wèn)題.結(jié)合上述觀點(diǎn):對(duì)于函數(shù),的最小值為_(kāi)_____15.若a,b,c都為正數(shù),,且,,成等比數(shù)列,則的最大值為_(kāi)___________.16.已知數(shù)列的各項(xiàng)均為正數(shù),其前項(xiàng)和滿足,則__________;記表示不超過(guò)的最大整數(shù),例如,若,設(shè)的前項(xiàng)和為,則__________三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,在三棱錐中,平面,,,為的中點(diǎn).(1)證明:平面;(2)求平面與平面所成二面角的正弦值.18.(12分)已知函數(shù)(1)求單調(diào)增區(qū)間;(2)當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍.19.(12分)已知拋物線:的焦點(diǎn)為,直線與拋物線在第一象限的交點(diǎn)為,且(1)求拋物線的方程;(2)經(jīng)過(guò)焦點(diǎn)作互相垂直的兩條直線,,與拋物線相交于,兩點(diǎn),與拋物線相交于,兩點(diǎn).若,分別是線段,的中點(diǎn),求的最小值20.(12分)在平面直角坐標(biāo)系內(nèi),已知的三個(gè)頂點(diǎn)坐標(biāo)分別為(1)求邊垂直平分線所在的直線的方程;(2)若的面積為5,求點(diǎn)的坐標(biāo)21.(12分)已知橢圓.離心率為,點(diǎn)與橢圓的左、右頂點(diǎn)可以構(gòu)成等腰直角三角形(1)求橢圓的方程;(2)若直線與橢圓交于兩點(diǎn),為坐標(biāo)原點(diǎn)直線的斜率之積等于,試探求的面積是否為定值,并說(shuō)明理由22.(10分)已知拋物線C:的焦點(diǎn)為F,為拋物線C上一點(diǎn),且(1)求拋物線C的方程:(2)若以點(diǎn)為圓心,為半徑的圓與C的準(zhǔn)線交于A,B兩點(diǎn),過(guò)A,B分別作準(zhǔn)線的垂線交拋物線C于D,E兩點(diǎn),若,證明直線DE過(guò)定點(diǎn)

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】設(shè)等比數(shù)列的公比為,根據(jù)等比數(shù)列的通項(xiàng)公式得到,即可求出,再根據(jù)計(jì)算可得;【詳解】解:設(shè)等比數(shù)列公比為,因?yàn)?、,所以,所以;故選:B2、B【解析】建立空間直角坐標(biāo)系如圖所示,設(shè)由,得出點(diǎn)的軌跡方程,由幾何性質(zhì)求得,再根據(jù)垂直關(guān)系求出△面積的最小值【詳解】以點(diǎn)為原點(diǎn),分別為軸建立空間直角坐標(biāo)系,如圖所示:則,,設(shè)所以,得,所以因?yàn)槠矫?,所以故△面積的最小值為故選:B3、C【解析】構(gòu)造函數(shù),分析函數(shù)在上的單調(diào)性,將所求不等式變形為,可得出關(guān)于的不等式,即可得解.【詳解】構(gòu)造函數(shù),其中,則,所以,函數(shù)為上的奇函數(shù),當(dāng)時(shí),,且不恒為零,所以,函數(shù)在上為增函數(shù),且該函數(shù)在上也為增函數(shù),故函數(shù)在上為增函數(shù),因?yàn)?,則,由得,可得,解得故選:C.4、A【解析】由等差中項(xiàng)的概念列式求得值,再由等比數(shù)列的通項(xiàng)公式列式求解,則答案可求.【詳解】由題意,,則;又1,,,8成等比數(shù)列,公比為,,即,,故選:.5、D【解析】由于,所以利用裂項(xiàng)相消求和法可求得,然后由可得恒成立,再利用基本不等式求出的最小值即可【詳解】,故,故恒成立等價(jià)于,即恒成立,化簡(jiǎn)得到,因?yàn)?,?dāng)且僅當(dāng),即時(shí)取等號(hào),所以故選:D6、D【解析】詳解】由題意可設(shè)|PF2|=m,結(jié)合條件可知|PF1|=2m,|F1F2|=m,故離心率e=選D.點(diǎn)睛:解決橢圓和雙曲線的離心率的求值及范圍問(wèn)題其關(guān)鍵就是確立一個(gè)關(guān)于的方程或不等式,再根據(jù)的關(guān)系消掉得到的關(guān)系式,而建立關(guān)于的方程或不等式,要充分利用橢圓和雙曲線的幾何性質(zhì)、點(diǎn)的坐標(biāo)的范圍等.7、B【解析】由,得到,結(jié)合,得到,進(jìn)而求得,得出,結(jié)合離心率的定義,即可求解.【詳解】設(shè),則,由,可得,所以,因?yàn)椋傻?,又由,兩式相減得,即,即,又因?yàn)?,所以,即又由,所以,解?故選:B.8、A【解析】由雙曲線的定義及三角形的幾何性質(zhì)可求解.【詳解】如圖,圓的圓心為,半徑為1,,,當(dāng),,三點(diǎn)共線時(shí),最小,最小值為,而,所以故選:A9、A【解析】設(shè)出雙曲線的方程,根據(jù)已知條件列出方程組即可求解.【詳解】設(shè)雙曲線的方程為,由雙曲線的上焦點(diǎn)到下頂點(diǎn)的距離為18,即,上焦點(diǎn)的坐標(biāo)為,其中一條漸近線為,上焦點(diǎn)到漸近線的距離為,則,解得,,即,故選:.10、D【解析】先求得直線的斜率,由此求得傾斜角.【詳解】依題意,直線的斜率為,傾斜角的范圍為,則傾斜角為.故選:D.11、D【解析】分析可知函數(shù)在上為增函數(shù),且有,將所求不等式變形為,可得出關(guān)于實(shí)數(shù)的不等式,由此可解得實(shí)數(shù)的取值范圍.【詳解】因?yàn)楹瘮?shù)是偶函數(shù)且在上單調(diào)遞減,則該函數(shù)在上為增函數(shù),且,由可得,所以,,可得或,解得或.因此,不等式的解集為.故選:D.12、B【解析】首先求出F1到漸近線的距離,利用F1關(guān)于漸近線的對(duì)稱點(diǎn)恰落在圓上,可得直角三角形,利用勾股定理得到關(guān)于ac的齊次式,即可求出雙曲線的離心率【詳解】由題意可設(shè),則到漸近線的距離為.設(shè)關(guān)于漸近線的對(duì)稱點(diǎn)為M,F1M與漸近線交于A,∴MF1=2b,A為F1M的中點(diǎn).又O是F1P的中點(diǎn),∴OA∥F2M,∴為直角,所以△為直角三角形,由勾股定理得:,所以,所以,所以離心率故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】由平均數(shù)列出方程,求出x的值.【詳解】由題意得:,解得:.故答案為:114、【解析】根據(jù)題意得,表示點(diǎn)與點(diǎn)與距離之和的最小值,再找對(duì)稱點(diǎn)求解即可.【詳解】函數(shù),表示點(diǎn)與點(diǎn)與距離之和的最小值,則點(diǎn)在軸上,點(diǎn)關(guān)于軸的對(duì)稱點(diǎn),所以,所以的最小值為:.故答案為:.15、【解析】由等比數(shù)列性質(zhì)知,即可得,再利用基本不等式求解即可.【詳解】由,,成等比數(shù)列,得,即又,則,所以,即,即所以,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,故的最大值為故答案為:16、①.;②.60.【解析】先根據(jù)并結(jié)合等差數(shù)列的定義求出;然后討論n的取值范圍,討論出分別取1,2,3,4,5的情況,進(jìn)而求出.【詳解】由題意,,n=1時(shí),,滿足,時(shí),,于是,,因?yàn)椋?所以,是1為首項(xiàng),2為公差的等差數(shù)列,所以.若,即時(shí),,若,則時(shí),,若,則時(shí),,若,則時(shí),,若,則或22時(shí),,于是,.故答案為:2n-1;60.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解析(2)【解析】(1)根據(jù)勾股定理先證明,然后證明,進(jìn)而通過(guò)線面垂直的判定定理證明問(wèn)題;(2)建立空間直角坐標(biāo)系,進(jìn)而求出兩個(gè)平面的法向量,然后通過(guò)空間向量的夾角公式求得答案.【小問(wèn)1詳解】∵,,∴,∴,∵平面,平面,∴,∵,,,∴平面.【小問(wèn)2詳解】以點(diǎn)為坐標(biāo)原點(diǎn),向量,的方向分別為,軸的正方向建立空間直角坐標(biāo)系,則,,,,,設(shè)平面的法向量為,由,,有取,可得平面的一個(gè)法向量為.設(shè)平面的一個(gè)法向量為,由,,有取,可得平面的一個(gè)法向量為,所以,故平面與平面的夾角的正弦值為.18、(1)單調(diào)增區(qū)間為;(2).【解析】(1)求導(dǎo)由求解.(2)將時(shí),恒成立,轉(zhuǎn)化為時(shí),恒成立,令用導(dǎo)數(shù)法由求解即可.【詳解】(1)因?yàn)楹瘮?shù)所以令,解得,所以單調(diào)增區(qū)間為.(2)因?yàn)闀r(shí),恒成立,所以時(shí),恒成立,令則令因?yàn)闀r(shí),恒成立,所以在單調(diào)遞減.當(dāng)時(shí),在單調(diào)遞減,故符合要求;當(dāng)時(shí),單調(diào)遞減,故存在使得則當(dāng)時(shí)單調(diào)遞增,不符合要求;當(dāng)時(shí),單調(diào)遞減,故存在使得則當(dāng)時(shí)單調(diào)遞增,不符合要求.綜上.【點(diǎn)睛】方法點(diǎn)睛:恒(能)成立問(wèn)題的解法:若在區(qū)間D上有最值,則(1)恒成立:;;(2)能成立:;.若能分離常數(shù),即將問(wèn)題轉(zhuǎn)化為:(或),則(1)恒成立:;;(2)能成立:;;19、(1);(2)8.【解析】(1)寫出拋物線E的準(zhǔn)線,利用拋物線定義求出p即可作答.(2)由(1)求出焦點(diǎn)坐標(biāo),設(shè)出直線的方程,并與拋物線E的方程聯(lián)立,由此求出C點(diǎn)坐標(biāo),同理可得D點(diǎn)坐標(biāo),列式計(jì)算作答.小問(wèn)1詳解】拋物線:的準(zhǔn)線方程為:,由拋物線定義得:,解得,所以拋物線的方程為:.【小問(wèn)2詳解】由(1)知,點(diǎn),顯然直線,的斜率都存在且不為0,設(shè)直線斜率為,則的斜率為,直線的方程為:,由消去y并整理得,設(shè),則,于得線段PQ中點(diǎn),同理得,則,當(dāng)且僅當(dāng),即時(shí)取“=”,所以的最小值是8.【點(diǎn)睛】結(jié)論點(diǎn)睛:拋物線方程中,字母p的幾何意義是拋物線的焦點(diǎn)F到準(zhǔn)線的距離,等于焦點(diǎn)到拋物線頂點(diǎn)的距離20、(1);(2)或【解析】(1)由題意直線的斜率公式,兩直線垂直的性質(zhì),求出的斜率,再用點(diǎn)斜式求直線的方程(2)根據(jù)的面積為5,求得點(diǎn)到直線的距離,再利用點(diǎn)到直線的距離公式,求得的值【詳解】解:(1),,的中點(diǎn)的坐標(biāo)為,又設(shè)邊的垂直平分線所在的直線的斜率為則,可得的方程為,即邊的垂直平分線所在的直線的方程(2)邊所在的直線方程為設(shè)邊上的高為即點(diǎn)到直線的距離為且解得解得或,點(diǎn)的坐標(biāo)為或21、(1);(2)是定值,理由見(jiàn)解析.【解析】(1)由題意有,點(diǎn)與橢圓的左、右頂點(diǎn)可以構(gòu)成等腰直角三角形有,即可寫出橢圓方程;(2)直線與橢圓交于兩點(diǎn),聯(lián)立方程結(jié)合韋達(dá)定理即有,已知應(yīng)用點(diǎn)線距離公式、三角形面積公式即可說(shuō)明的面積是否為定值;【詳解】(1)橢圓離心率為,即,∵點(diǎn)與橢圓的左、右頂點(diǎn)可以構(gòu)成等腰直角三角形,∴,綜上有:,,故橢圓方程為,(2)由直線與橢圓交于兩點(diǎn),聯(lián)立方程:,整理得,設(shè),則,,,,原點(diǎn)到的距離,為定值;【點(diǎn)睛】本題考查了由離心率求橢圓方程,根據(jù)直線

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論