版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
海南省農(nóng)墾實驗中學(xué)2024屆高二上數(shù)學(xué)期末考試模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)函數(shù)的圖象在點處的切線為,則與坐標(biāo)軸圍成的三角形面積的最小值為()A. B.C. D.2.已知是公差為3的等差數(shù)列.若,,成等比數(shù)列,則的前10項和()A.165 B.138C.60 D.303.已知向量,,且與互相垂直,則k的值是().A.1 B.C. D.4.和的等差中項與等比中項分別為()A., B.2,C., D.1,5.過點的直線與圓相切,則直線的方程為()A.或 B.或C.或 D.或6.已知函數(shù)在上是增函數(shù),則實數(shù)的取值范圍是()A. B.C. D.7.對于兩個平面、,“內(nèi)有無數(shù)多個點到的距離相等”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件8.已知雙曲線,過左焦點且與軸垂直的直線與雙曲線交于、兩點,若弦的長恰等于實鈾的長,則雙曲線的離心率為()A. B.C. D.9.已知橢圓與橢圓,則下列結(jié)論正確的是()A.長軸長相等 B.短軸長相等C.焦距相等 D.離心率相等10.設(shè)數(shù)列的前項和為,若,,,則、、、中,最大的是()A. B.C. D.11.1852年英國來華傳教士偉烈亞力將《孫子算經(jīng)》中“物不知數(shù)”問題解法傳至歐洲,西方人稱之為“中國剩余定理”.現(xiàn)有這樣一個問題:將1到200中被3整除余1且被4整除余2的數(shù)按從小到大的順序排成一列,構(gòu)成數(shù)列,則=()A.130 B.132C.140 D.14412.為了解義務(wù)教育階段學(xué)校對雙減政策的落實程度,某市教育局從全市義務(wù)教育階段學(xué)校中隨機抽取了6所學(xué)校進行問卷調(diào)查,其中有4所小學(xué)和2所初級中學(xué),若從這6所學(xué)校中再隨機抽取兩所學(xué)校作進一步調(diào)查,則抽取的這兩所學(xué)校中恰有一所小學(xué)的概率是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.等比數(shù)列的前項和為,則的值為_____14.橢圓的左、右焦點分別為,,為坐標(biāo)原點,則以下說法正確的是()A.過點的直線與橢圓交于,兩點,則的周長為8B.橢圓上存在點,使得C.橢圓的離心率為D.為橢圓上一點,為圓上一點,則點,的最大距離為315.已知雙曲線:的左、右焦點分別為,,為的右支上一點,且,則的離心率為___________.16.在等差數(shù)列中,,公差,則_________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知等差數(shù)列滿足,(1)求的通項公式;(2)若等比數(shù)列的前n項和為,且,,,求滿足的n的最大值18.(12分)如圖,在直三棱柱中,,,.M為側(cè)棱的中點,連接,,CM.(1)證明:AC平面;(2)證明:平面;(3)求二面角的大小.19.(12分)已知拋物線C:x2=4y的焦點為F,過F的直線與拋物線C交于A,B兩點,點M在拋物線C的準(zhǔn)線上,MF⊥AB,S△AFM=λS△BFM(1)當(dāng)λ=3時,求|AB|的值;(2)當(dāng)λ∈[]時,求|+|的最大值20.(12分)已知點,直線:,直線m過點N且與垂直,直線m交圓于兩點A,B.(1)求直線m的方程;(2)求弦AB的長.21.(12分)為了在夏季降溫和冬季供暖時減少能源損耗,房屋的屋頂和外墻需要建造隔熱層.某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元.該建筑物每年的能源消耗費用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關(guān)系:C(x)=若不建隔熱層,每年能源消耗費用為8萬元.設(shè)f(x)為隔熱層建造費用與20年的能源消耗費用之和(Ⅰ)求k的值及f(x)的表達(dá)式(Ⅱ)隔熱層修建多厚時,總費用f(x)達(dá)到最小,并求最小值22.(10分)在中,角A,B,C的對邊分別為a,b,c,且求A和B的大??;若M,N是邊AB上的點,,求的面積的最小值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】利用導(dǎo)數(shù)的幾何意義求得切線為,求x、y軸上截距,進而可得與坐標(biāo)軸圍成的三角形面積,利用導(dǎo)數(shù)研究在上的最值即可得結(jié)果.【詳解】由題設(shè),,則,又,所以切線為,當(dāng)時,當(dāng)時,又,所以與坐標(biāo)軸圍成的三角形面積為,則,當(dāng)時,當(dāng)時,所以在上遞減,在上遞增,即.故選:C2、A【解析】由等差數(shù)列的定義與等比數(shù)列的性質(zhì)求得首項,然后由等差數(shù)列的前項和公式計算【詳解】因為,,成等比數(shù)列,所以,所以,解得,所以故選:A3、D【解析】利用向量的數(shù)量積為0可求的值.【詳解】因與互相垂直,故,故即,故.故選:D.4、C【解析】根據(jù)等差中項和等比中項的概念分別求值即可.【詳解】和的等差中項為,和的等比中項為.故選:C.5、D【解析】根據(jù)斜率存在和不存在分類討論,斜率存在時設(shè)直線方程,由圓心到直線距離等于半徑求解【詳解】圓心為,半徑為2,斜率不存在時,直線滿足題意,斜率存在時,設(shè)直線方程為,即,由,得,直線方程為,即故選:D6、A【解析】由題意可知,對任意的恒成立,可得出對任意的恒成立,利用基本不等式可求得實數(shù)的取值范圍.【詳解】因為,則,由題意可知,對任意的恒成立,所以,對任意的恒成立,由基本不等式可得,當(dāng)且僅當(dāng)時,等號成立,所以,.故選:A.7、B【解析】根據(jù)平面的性質(zhì)分別判斷充分性和必要性.【詳解】充分性:若內(nèi)有無數(shù)多個點到的距離相等,則、平行或相交,故充分性不成立;必要性:若,則內(nèi)每個點到的距離相等,故必要性成立,所以“內(nèi)有無數(shù)多個點到的距離相等”是“”的必要不充分條件.故選:B.8、B【解析】求出,進而求出,之間的關(guān)系,即可求解結(jié)論【詳解】解:由題意,直線方程為:,其中,因此,設(shè),,,,解得,得,,弦的長恰等于實軸的長,,,故選:B9、C【解析】利用,可得且,即可得出結(jié)論【詳解】∵,且,橢圓與橢圓的關(guān)系是有相等的焦距故選:C10、C【解析】求出的表達(dá)式,解不等式可得結(jié)果.【詳解】由已知可得,故數(shù)列為等差數(shù)列,且公差為,所以,,令可得.因此,當(dāng)時,最大.故選:C.11、A【解析】分析數(shù)列的特點,可知其是等差數(shù)列,寫出其通項公式,進而求得結(jié)果,【詳解】被3整除余1且被4整除余2的數(shù)按從小到大的順序排成一列,這樣的數(shù)構(gòu)成首項為10,公差為12的等差數(shù)列,所以,故,故選:A.12、A【解析】由組合知識結(jié)合古典概型概率公式求解即可.【詳解】從這6所學(xué)校中隨機抽取兩所學(xué)校的情況共有種,這兩所學(xué)校中恰有一所小學(xué)的情況共有種,則其概率為.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)等比數(shù)列前項和公式的特點列方程,解方程求得的值.【詳解】由于等比數(shù)列前項和,本題中,故.故填:.【點睛】本小題主要考查等比數(shù)列前項和公式的特點,考查觀察與思考的能力,屬于基礎(chǔ)題.14、ABD【解析】結(jié)合橢圓定義判斷A選項的正確性,結(jié)合向量數(shù)量積的坐標(biāo)運算判斷B選項的正確性,直接法求得橢圓的離心率,由此判斷C選項的正確性,結(jié)合兩點間距離公式判斷D選項的正確性.【詳解】對于選項:由橢圓定義可得:,因此的周長為,所以選項正確;對于選項:設(shè),則,且,又,,所以,,因此,解得,,故選項正確;對于選項:因為,,所以,即,所以離心率,所以選項錯誤;對于選項:設(shè),,則點到圓的圓心的距離為,因為,所以,所以選項正確,故選:ABD15、【解析】由雙曲線定義可得a,代入點P坐標(biāo)可得b,然后可解.【詳解】由題知,故,又點在雙曲線上,所以,解得,所以.故答案為:16、15【解析】由等差數(shù)列通項公式直接可得.【詳解】.故答案為:15三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)10【解析】(1)設(shè)等差數(shù)列公差為d,根據(jù)已知條件列關(guān)于和d的方程組即可求解;(2)設(shè)等比數(shù)列公比為q,根據(jù)已知條件求出和q,根據(jù)等比數(shù)列求和公式即可求出,再解關(guān)于n的不等式即可.【小問1詳解】由題意得,解得,∴【小問2詳解】∵,,又,∴,公比,∴,令,得,令,所以n的最大值為1018、(1)證明見詳解;(2)證明見詳解;(3)【解析】小問1:由于,根據(jù)線面平行判定定理即可證明;小問2:以為原點,分別為軸建立空間坐標(biāo)系,根據(jù)向量垂直關(guān)系即可證明;小問3:分別求得平面與平面的法向量,根據(jù)向量夾角公式即可求解【小問1詳解】在直三棱柱中,,且平面,平面所以AC平面;【小問2詳解】因為,故以為原點,分別為軸建立空間坐標(biāo)系如圖所示:則,所以則所以又平面,平面故平面;【小問3詳解】由,得,設(shè)平面的一個法向量為則得又因為平面的一個法向量為所以所以二面角的大小為19、(1)(2)【解析】(1)由面積之比可得向量之比,設(shè)直線AB的方程,與拋物線的方程聯(lián)立求出兩根之和及兩根之積,與向量的關(guān)系可得的A,B的橫坐標(biāo)的關(guān)系聯(lián)立求出直線AB的斜率,再由拋物線的性質(zhì)可得焦點弦的值;(2)由(1)的解法類似的求出AB的中點N的坐標(biāo),可得直線AB的斜率與λ的關(guān)系,再由λ的范圍,求出直線AB的斜率的范圍,由題意設(shè)直線MF的方程,令y=﹣1求出M的橫坐標(biāo),進而求出|MN|的最大值,而|+|=2||,求出|+|的最大值【小問1詳解】當(dāng)λ=3時,即S△AFM=3S△BFM,由題意可得=3,因為拋物線C:x2=4y的焦點為F(1,0),準(zhǔn)線方程為y=﹣1,設(shè)A(x1,y1),B(x2,y2),直線AB的方程為y=kx+1,聯(lián)立,整理可得:x2﹣4kx﹣4=0,顯然,x1+x2=4k①,x1x2=﹣4②,y1+y2=k(x1+x2)+2=4k2+2,由=3,則(﹣x1,1﹣y1)=3(x2,y2﹣1)可得x1=﹣3x2③,①③聯(lián)立可得x2=﹣2k,x1=6k,代入②中可得﹣12k2=﹣4,解得k2=,由拋物線的性質(zhì)可得|AB|=y(tǒng)1+y2+2=4×+2=,所以|AB|的值為;【小問2詳解】由(1)可得AB中點N(2k,2k2+2),由=λ,則x1=﹣λx2④,同(1)的算法:①②④聯(lián)立4k2λ=(1﹣λ)2,因為λ∈[],所以4k2=λ+﹣2,令y=λ+,λ∈[],則函數(shù)y先減后增,所以λ=2或時,y最大且為2+,此時4k2最大,且為,所以k2的最大值為:,直線MF的方程為:y=﹣x+1,令y=﹣1,可得x=2k,即M(2k,﹣1),因為|+|=2||,而|NM|=|2k2+2+1|=2k2+3≤2×+3=,所以|+|的最大值為20、(1)(2)【解析】(1)求出斜率,用點斜式求直線方程;(2)利用垂徑定理求弦長.【小問1詳解】因為直線:,所以直線的斜率為.因為直線m過點N且與垂直,所以直線的斜率為,又過點,所以直線:,即【小問2詳解】直線與圓相交,則圓心到直線的距離為:,圓的半徑為,所以弦長21、,因此.,當(dāng)隔熱層修建厚時,總費用達(dá)到最小值70萬元【解析】解:(Ⅰ)設(shè)隔熱層厚度為,由題設(shè),每年能源消耗費用為.再由,得,因此.而建造費用為最后得隔熱層建造費用與20年的能源消耗費用之和為(Ⅱ),令,即.解得,(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 豪華大廈租賃合同三篇
- 五彩繽紛的成長路幼兒園工作總結(jié)
- 電競行業(yè)服務(wù)員工作總結(jié)
- 表達(dá)能力培養(yǎng)方案計劃
- 學(xué)會如何有效地分配學(xué)習(xí)時間
- 二零二五年度海洋資源項目融資合作協(xié)議書3篇
- 金融行業(yè)顧問工作總結(jié)
- 紡織行業(yè)安全隱患排查
- 二零二五年度個人抵押貸款風(fēng)險評估合同
- 二零二五個人分紅協(xié)議范本適用于互聯(lián)網(wǎng)平臺分紅合作2篇
- 現(xiàn)代科學(xué)技術(shù)概論智慧樹知到期末考試答案章節(jié)答案2024年成都師范學(xué)院
- 軟件模塊化設(shè)計與開發(fā)標(biāo)準(zhǔn)與規(guī)范
- 網(wǎng)絡(luò)安全基礎(chǔ)知識入門教程
- AI智慧物流園區(qū)整體建設(shè)方案
- 2024年遼寧鐵道職業(yè)技術(shù)學(xué)院高職單招(英語/數(shù)學(xué)/語文)筆試歷年參考題庫含答案解析
- 無痛人工流產(chǎn)術(shù)課件
- 有機農(nóng)業(yè)種植模式
- 勞務(wù)派遣招標(biāo)文件
- 法醫(yī)病理學(xué)課件
- 介紹uppc技術(shù)特點
- 采空區(qū)穩(wěn)定性可靠度分析
評論
0/150
提交評論