河北邯鄲2024屆數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測(cè)試題含解析_第1頁(yè)
河北邯鄲2024屆數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測(cè)試題含解析_第2頁(yè)
河北邯鄲2024屆數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測(cè)試題含解析_第3頁(yè)
河北邯鄲2024屆數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測(cè)試題含解析_第4頁(yè)
河北邯鄲2024屆數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測(cè)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

河北邯鄲2024屆數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測(cè)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫(xiě)在試題卷和答題卡上。用2B鉛筆將試卷類(lèi)型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫(xiě)在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知數(shù)列是等差數(shù)列,下面的數(shù)列中必為等差數(shù)列的個(gè)數(shù)為()①②③A.0 B.1C.2 D.32.已知點(diǎn),若直線與線段沒(méi)有公共點(diǎn),則的取值范圍是()A. B.C. D.3.公元前6世紀(jì),古希臘的畢達(dá)哥拉斯學(xué)派研究發(fā)現(xiàn)了黃金分割,簡(jiǎn)稱(chēng)黃金數(shù).離心率等于黃金數(shù)的倒數(shù)的雙曲線稱(chēng)為黃金雙曲線.若雙曲線是黃金雙曲線,則()A. B.C. D.4.用數(shù)學(xué)歸納法證明“”的過(guò)程中,從到時(shí),不等式的左邊增加了()A. B.C. D.5.若不等式組表示的區(qū)域?yàn)?,不等式表示的區(qū)域?yàn)?,向區(qū)域均勻隨機(jī)撒顆芝麻,則落在區(qū)域中的芝麻數(shù)約為()A. B.C. D.6.甲烷是一種有機(jī)化合物,分子式為,其在自然界中分布很廣,是天然氣、沼氣的主要成分.如圖所示的為甲烷的分子結(jié)構(gòu)模型,已知任意兩個(gè)氫原子之間的距離(H-H鍵長(zhǎng))相等,碳原子到四個(gè)氫原子的距離(C-H鍵長(zhǎng))均相等,任意兩個(gè)H-C-H鍵之間的夾角為(鍵角)均相等,且它的余弦值為,即,若,則以這四個(gè)氫原子為頂點(diǎn)的四面體的體積為()A. B.C. D.7.已知,,且,則向量與的夾角為()A. B.C. D.8.已知數(shù)列是等比數(shù)列,數(shù)列是等差數(shù)列,若,則()A. B.C. D.9.如圖,在三棱錐中,是線段的中點(diǎn),則()A. B.C. D.10.已知O為坐標(biāo)原點(diǎn),=(1,2,3),=(2,1,2),=(1,1,2),點(diǎn)Q在直線OP上運(yùn)動(dòng),則當(dāng)取得最小值時(shí),點(diǎn)Q的坐標(biāo)為()A. B.C. D.11.已知橢圓與雙曲線有相同的焦點(diǎn),則的值為A. B.C. D.12.命題“,”的否定形式是()A., B.,C., D.,二、填空題:本題共4小題,每小題5分,共20分。13.已知斜率為1的直線經(jīng)過(guò)橢圓的左焦點(diǎn),且與橢圓交于,兩點(diǎn),若橢圓上存在點(diǎn),使得的重心恰好是坐標(biāo)原點(diǎn),則橢圓的離心率______.14.已知向量,,若向量與向量平行,則實(shí)數(shù)______15.若直線與直線平行,且原點(diǎn)到直線的距離為,則直線的方程為_(kāi)___________.16.已知函數(shù),若在上是增函數(shù),則實(shí)數(shù)的取值范圍是________三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知橢圓的左、右焦點(diǎn)分別為,過(guò)右焦點(diǎn)作直線交于,其中的周長(zhǎng)為的離心率為.(1)求的方程;(2)已知的重心為,設(shè)和的面積比為,求實(shí)數(shù)的取值范圍.18.(12分)已知等差數(shù)列的前n項(xiàng)和為,且.(1)求數(shù)列的通項(xiàng)公式及;(2)設(shè),求數(shù)列的前n項(xiàng)和.19.(12分)“中山橋”是位于蘭州市中心,橫跨黃河之上的一座百年老橋,如圖①,橋上有五個(gè)拱形橋架緊密相連,每個(gè)橋架的內(nèi)部有一個(gè)水平橫梁和八個(gè)與橫梁垂直的立柱,氣勢(shì)宏偉,素有“天下黃河第一橋”之稱(chēng).如圖②,一個(gè)拱形橋架可以近似看作是由等腰梯形和其上方的拋物線(部分)組成,建立如圖所示的平面直角坐標(biāo)系,已知,,,,立柱.(1)求立柱及橫梁的長(zhǎng);(2)求拋物線的方程和橋梁的拱高.20.(12分)已知是公差不為零等差數(shù)列,,且、、成等比數(shù)列(1)求數(shù)列的通項(xiàng)公式:(2)設(shè).?dāng)?shù)列{}的前項(xiàng)和為,求證:21.(12分)如圖1,四邊形為直角梯形,,,,,為上一點(diǎn),為的中點(diǎn),且,,現(xiàn)將梯形沿折疊(如圖2),使平面平面.(1)求證:平面平面.(2)能否在邊上找到一點(diǎn)(端點(diǎn)除外)使平面與平面所成角的余弦值為?若存在,試確定點(diǎn)的位置,若不存在,請(qǐng)說(shuō)明理由.22.(10分)已知函數(shù)(Ⅰ)若的圖象在點(diǎn)處的切線與軸負(fù)半軸有公共點(diǎn),求的取值范圍;(Ⅱ)當(dāng)時(shí),求的最值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】根據(jù)等差數(shù)列的定義判斷【詳解】設(shè)的公差為,則,是等差數(shù)列,,是常數(shù)列,也是等差數(shù)列,若,則不是等差數(shù)列,故選:C2、A【解析】分別求出,即可得到答案.【詳解】直線經(jīng)過(guò)定點(diǎn).因?yàn)?,所?所以要使直線與線段沒(méi)有公共點(diǎn),只需:,即.所以的取值范圍是.故選:A3、A【解析】根據(jù)黃金雙曲線的定義直接列方程求解【詳解】雙曲線中的,所以離心率,因?yàn)殡p曲線是黃金雙曲線,所以,兩邊平方得,解得或(舍去),故選:A4、B【解析】依題意,由遞推到時(shí),不等式左邊為,與時(shí)不等式的左邊作差比較即可得到答案【詳解】用數(shù)學(xué)歸納法證明等式的過(guò)程中,假設(shè)時(shí)不等式成立,左邊,則當(dāng)時(shí),左邊,∴從到時(shí),不等式的左邊增加了故選:B5、A【解析】作出兩平面區(qū)域,計(jì)算兩區(qū)域的公共面積,利用幾何概型得出芝麻落在區(qū)域Γ內(nèi)的概率,進(jìn)而可得答案.【詳解】作出不等式組所表示的平面區(qū)域如下圖中三角形ABC及其內(nèi)部,不等式表示的區(qū)域如下圖中的圓及其內(nèi)部:由圖可得,A點(diǎn)坐標(biāo)為點(diǎn)坐標(biāo)為坐標(biāo)為點(diǎn)坐標(biāo)為.區(qū)域即的面積為,區(qū)域的面積為圓的面積,即,其中區(qū)域和區(qū)域不相交的部分面積即空白面積,所以區(qū)域和區(qū)域相交的部分面積,所以落入?yún)^(qū)域的概率為.所以均勻隨機(jī)撒顆芝麻,則落在區(qū)域中芝麻數(shù)約為.故選:A.6、A【解析】利用余弦定理求得,計(jì)算出正四面體的高,從而計(jì)算出正四面體的體積.【詳解】設(shè),則由余弦定理知:,解得,故該正四面體的棱長(zhǎng)均為由正弦定理可知:該正四面體底面外接圓的半徑,高故該正四面體的體積為故選:A7、B【解析】先求出向量與的夾角的余弦值,即可求出與的夾角.【詳解】,所以,∴,∴,∴,又∵,∴與的夾角為.故選:B.8、A【解析】結(jié)合等差中項(xiàng)和等比中項(xiàng)分別求出和,代值運(yùn)算化簡(jiǎn)即可.【詳解】由是等比數(shù)列可得,是等差數(shù)列可得,所以,故選:A9、A【解析】根據(jù)給定幾何體利用空間向量基底結(jié)合向量運(yùn)算計(jì)算作答.【詳解】在三棱錐中,是線段的中點(diǎn),所以:.故選:A10、C【解析】設(shè),用表示出,求得的表達(dá)式,結(jié)合二次函數(shù)的性質(zhì)求得當(dāng)時(shí),取得最小值,從而求得點(diǎn)的坐標(biāo).【詳解】設(shè),則=-=-λ=(1-λ,2-λ,3-2λ),=-=-λ=(2-λ,1-λ,2-2λ),所以=(1-λ,2-λ,3-2λ)·(2-λ,1-λ,2-2λ)=2(3λ2-8λ+5)=.所以當(dāng)λ=時(shí),取得最小值,此時(shí)==,即點(diǎn)Q的坐標(biāo)為.故選:C11、C【解析】根據(jù)題意可知,結(jié)合的條件,可知,故選C考點(diǎn):橢圓和雙曲線性質(zhì)12、A【解析】特稱(chēng)命題的否定是全稱(chēng)命題【詳解】的否定形式是故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設(shè)點(diǎn),,坐標(biāo)分別為,則根據(jù)題意有,分別將點(diǎn),,的坐標(biāo)代入橢圓方程得,然后聯(lián)立直線與橢圓方程,利用韋達(dá)定理得到和的值,代入得到關(guān)于的齊次式,然后解出離心率.【詳解】設(shè),,坐標(biāo)分別為,因?yàn)榈闹匦那『檬亲鴺?biāo)原點(diǎn),則,則,代入橢圓方程可得,其中,所以……①因?yàn)橹本€的斜率為,且過(guò)左焦點(diǎn),則的方程為:,聯(lián)立方程消去可得:,所以,……②所以……③,將②③代入①得,從而.故答案為:【點(diǎn)睛】本題考查橢圓的離心率求解問(wèn)題,難度較大.解答時(shí),注意,,三點(diǎn)坐標(biāo)之間的關(guān)系,注意韋達(dá)定理在解題中的運(yùn)用.14、2【解析】先求出的坐標(biāo),進(jìn)而根據(jù)空間向量平行的坐標(biāo)運(yùn)算求得答案.【詳解】由題意,,因?yàn)?,所以存在?shí)數(shù)使得.故答案為:2.15、【解析】可設(shè)直線的方程為,利用點(diǎn)到直線的距離公式求得,即可得解.【詳解】可設(shè)直線的方程為,即,則原點(diǎn)到直線的距離為,解得,所以直線的方程為.故答案為:.16、【解析】根據(jù)函數(shù)在上是增函數(shù),分段函數(shù)在整個(gè)定義域內(nèi)單調(diào),則在每個(gè)函數(shù)內(nèi)單調(diào),注意銜接點(diǎn)的函數(shù)值.【詳解】解:因?yàn)楹瘮?shù)在上是增函數(shù),所以在區(qū)間上是增函數(shù)且在區(qū)間上也是增函數(shù),對(duì)于函數(shù)在上是增函數(shù),則;①對(duì)于函數(shù),(1)當(dāng)時(shí),,外函數(shù)為定義域內(nèi)的減函數(shù),內(nèi)函數(shù)在上是增函數(shù),根據(jù)復(fù)合函數(shù)“同增異減”可得時(shí)函數(shù)在區(qū)間上是減函數(shù),不符合題意,故舍去,(2)當(dāng)時(shí),外函數(shù)為定義域內(nèi)的增函數(shù),要使函數(shù)在區(qū)間上是增函數(shù),則內(nèi)函數(shù)在上也是增函數(shù),且對(duì)數(shù)函數(shù)真數(shù)大于0,即在上也要恒成立,所以,又,所以,②又在上是增函數(shù)則在銜接點(diǎn)處函數(shù)值應(yīng)滿(mǎn)足:,化簡(jiǎn)得,③由①②③得,,所以實(shí)數(shù)的取值范圍是.故答案為:.【點(diǎn)睛】方法點(diǎn)睛:利用單調(diào)性求參數(shù)方法如下:(1)依據(jù)函數(shù)的圖象或單調(diào)性定義,確定函數(shù)的單調(diào)區(qū)間,與已知單調(diào)區(qū)間比較;(2)需注意若函數(shù)在區(qū)間上是單調(diào)的,則該函數(shù)在此區(qū)間的任意子集上也是單調(diào)的;(3)分段函數(shù)的單調(diào)性,除注意各段的單調(diào)性外,還要注意銜接點(diǎn)的取值三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)【解析】(1)已知焦點(diǎn)弦三角形的周長(zhǎng),以及離心率求橢圓方程,待定系數(shù)直接求解即可.(2)第一步設(shè)點(diǎn)設(shè)直線,第二步聯(lián)立方程韋達(dá)定理,第三步條件轉(zhuǎn)化,利用三角形等面積法,列方程,第四步利用韋達(dá)定理進(jìn)行轉(zhuǎn)化,計(jì)算即可.【小問(wèn)1詳解】因?yàn)榈闹荛L(zhǎng)為,的離心率為,所以,,所以,,又,所以橢圓的方程為.【小問(wèn)2詳解】方法一:,,的面積為,的面積為,則,得,①設(shè),與橢圓C方程聯(lián)立,消去得,由韋達(dá)定理得,.令,②則,可得當(dāng)時(shí),當(dāng)時(shí),所以,又解得③由①②③得,解得.所以實(shí)數(shù)的取值范圍是.方法二:同方法一可得的面積為,的面積為,則,得,①設(shè),與橢圓C方程聯(lián)立,消去得,由韋達(dá)定理得,.所以因?yàn)?,所以解得②由①②解?所以實(shí)數(shù)的取值范圍是.18、(1)(2)【解析】(1)設(shè)等差數(shù)列的公差為,根據(jù)已知條件可得出關(guān)于、的方程組,解出這兩個(gè)量的值,利用等差數(shù)列的通項(xiàng)公式可求得數(shù)列的通項(xiàng)公式,利用等差數(shù)列前n項(xiàng)和公式求出;(2)求得,利用裂項(xiàng)相消法即可求得.【小問(wèn)1詳解】設(shè)等差數(shù)列的公差為,由,解得,所以,故數(shù)列的通項(xiàng)公式,;【小問(wèn)2詳解】由(1)可得,所以,所以.19、(1),(2),【解析】(1)根據(jù)梯形的幾何性質(zhì),即可求解;(2)表示出M,N的坐標(biāo),代入拋物線方程中,結(jié)合條件解得p值,繼而求得拱高.【小問(wèn)1詳解】由題意,知,因?yàn)锳BFM是等腰梯形,由對(duì)稱(chēng)性知:,所以,【小問(wèn)2詳解】由(1)知,所以點(diǎn)M的橫坐標(biāo)為-18,則N的橫坐標(biāo)為-(18-5)=-13.設(shè)點(diǎn)M,N的縱坐標(biāo)分別為y1,y2,由圖形,知設(shè)拋物線的方程為,,兩式相減,得2p(y2-y1)=182-132=155,解得:2p=100故拋物線的方程為x2=-100y.因此,當(dāng)x=-18時(shí),所以橋梁的拱高OH=3.24+4=7.24m.20、(1);(2)證明見(jiàn)解析.【解析】(1)設(shè)等差數(shù)列的公差為,則,根據(jù)題意可得出關(guān)于的方程,求出的值,利用等差數(shù)列的通項(xiàng)公式可求得數(shù)列的通項(xiàng)公式;(2)求得,利用裂項(xiàng)相消法求出,即可證得結(jié)論成立.【小問(wèn)1詳解】解:設(shè)等差數(shù)列的公差為,則,由題意可得,即,整理可得,,解得,因此,.【小問(wèn)2詳解】證明:,因此,,故原不等式得證.21、(1)證明見(jiàn)解析.(2)存在點(diǎn),為線段中點(diǎn)【解析】(1)根據(jù)線面垂直的判定定理和面面垂直的判定定理,即可證得平面平面;(2)以為坐標(biāo)原點(diǎn)建立如圖所示的空間直角坐標(biāo)系,求得平面和平面的法向量,利用向量的夾角公式,即可求解.【詳解】(1)在直角梯形中,作于于,連接,則,,則,,則,在直角中,可得,則,所以,故,且折疊后與位置關(guān)系不變.又因?yàn)槠矫嫫矫?,且平面平面,所以平面,因?yàn)槠矫妫云矫嫫矫?(2)在中,由,為的中點(diǎn),可得.又因?yàn)槠矫嫫矫?,且平面平面,所以平面,則以為坐標(biāo)原點(diǎn)建立如圖所示的空間直角坐標(biāo)系,則,,,則,,設(shè)平面的法向量為,則,令,可得平面的法向量為,假設(shè)存在點(diǎn)使平面與平面所成角的余弦值為,且(),∵,∴,故,又,∴,又由,設(shè)平面的法向量為,可得,令得,∴,解得,因此存在點(diǎn)且為線段中點(diǎn)時(shí)使平面與平面所成角的余弦值為.本題考查了面面垂直的判定與證明,以及空間角的求解及應(yīng)用,意在考查學(xué)生的空間想象能力和邏輯推理能力,解答中熟記線面位置關(guān)系的判定定理和性質(zhì)定理,通過(guò)嚴(yán)密推理是線面位置關(guān)系判定的關(guān)鍵,同時(shí)對(duì)于立體幾何中角的計(jì)算問(wèn)題,往往可以利用空間向量法,通過(guò)求解平面的法向量

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論