甘肅省慶陽(yáng)市慶城縣隴東中學(xué)2023-2024學(xué)年高二上數(shù)學(xué)期末統(tǒng)考試題含解析_第1頁(yè)
甘肅省慶陽(yáng)市慶城縣隴東中學(xué)2023-2024學(xué)年高二上數(shù)學(xué)期末統(tǒng)考試題含解析_第2頁(yè)
甘肅省慶陽(yáng)市慶城縣隴東中學(xué)2023-2024學(xué)年高二上數(shù)學(xué)期末統(tǒng)考試題含解析_第3頁(yè)
甘肅省慶陽(yáng)市慶城縣隴東中學(xué)2023-2024學(xué)年高二上數(shù)學(xué)期末統(tǒng)考試題含解析_第4頁(yè)
甘肅省慶陽(yáng)市慶城縣隴東中學(xué)2023-2024學(xué)年高二上數(shù)學(xué)期末統(tǒng)考試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩11頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

甘肅省慶陽(yáng)市慶城縣隴東中學(xué)2023-2024學(xué)年高二上數(shù)學(xué)期末統(tǒng)考試題注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在平面直角坐標(biāo)系中,雙曲線的右焦點(diǎn)為,過(guò)雙曲線上一點(diǎn)作軸的垂線足為,若,則該雙曲線的離心率為()A. B.C. D.2.如圖,某圓錐軸截面是等邊三角形,點(diǎn)是底面圓周上的一點(diǎn),且,點(diǎn)是的中點(diǎn),則異面直線與所成角的余弦值是()A. B.C. D.3.已知圓O的半徑為5,,過(guò)點(diǎn)P的2021條弦的長(zhǎng)度組成一個(gè)等差數(shù)列,最短弦長(zhǎng)為,最長(zhǎng)弦長(zhǎng)為,則其公差為()A. B.C. D.4.給出下列結(jié)論:①如果數(shù)據(jù)的平均數(shù)為3,方差為0.2,則的平均數(shù)和方差分別為14和1.8;②若兩個(gè)變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)r的值越接近于1.③對(duì)A、B、C三種個(gè)體按3:1:2的比例進(jìn)行分層抽樣調(diào)查,若抽取的A種個(gè)體有15個(gè),則樣本容量為30.則正確的個(gè)數(shù)是().A.3 B.2C.1 D.05.若是等差數(shù)列的前項(xiàng)和,,則()A.13 B.39C.45 D.216.已知雙曲線的左、右焦點(diǎn)分別為,半焦距為c,過(guò)點(diǎn)作一條漸近線的垂線,垂足為P,若的面積為,則該雙曲線的離心率為()A.3 B.2C. D.7.在正方體中,分別為的中點(diǎn),為側(cè)面的中心,則異面直線與所成角的余弦值為()A. B.C. D.8.若、、為空間三個(gè)單位向量,,且與、所成的角均為,則()A.5 B.C. D.9.如圖①所示,將一邊長(zhǎng)為1的正方形沿對(duì)角線折起,形成三棱錐,其主視圖與俯視圖如圖②所示,則左視圖的面積為()A. B.C. D.10.已知,,,若,,共面,則λ等于()A. B.3C. D.911.如圖,四棱錐中,底面是邊長(zhǎng)為的正方形,平面,為底面內(nèi)的一動(dòng)點(diǎn),若,則動(dòng)點(diǎn)的軌跡在()A.圓上 B.雙曲線上C.拋物線上 D.橢圓上12.已知在等比數(shù)列中,,,則()A.9或 B.9C.27或 D.27二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列滿足,則其通項(xiàng)公式________14.用數(shù)字1,2,3,4,5,6,7,8,9組成沒(méi)有重復(fù)數(shù)字,且至多有一個(gè)數(shù)字是奇數(shù)的四位數(shù),這樣的四位數(shù)一共有___________個(gè).(用數(shù)字作答)15.已知向量,向量,若,則實(shí)數(shù)的值為_(kāi)_______.16.在空間直角坐標(biāo)系中,向量為平面ABC的一個(gè)法向量,其中,,則向量的坐標(biāo)為_(kāi)_____三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)求函數(shù)在區(qū)間上的最大值和最小值18.(12分)已知橢圓的左、右焦點(diǎn)分別為,,離心率為,過(guò)左焦點(diǎn)的直線l與橢圓C交于A,B兩點(diǎn),的周長(zhǎng)為8(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)如圖,,是橢圓C的短軸端點(diǎn),P是橢圓C上異于點(diǎn),的動(dòng)點(diǎn),點(diǎn)Q滿足,,求證與的面積之比為定值19.(12分)一杯100℃的開(kāi)水放在室溫25℃的房間里,1分鐘后水溫降到85℃,假設(shè)每分鐘水溫變化量和水溫與室溫之差成正比(1)分別求2分鐘,3分鐘后的水溫;(2)記n分鐘后的水溫為,證明:是等比數(shù)列,并求出的通項(xiàng)公式;(3)當(dāng)水溫在40℃到55℃之間時(shí)(包括40℃和55℃),為最適合飲用的溫度,則在水燒開(kāi)后哪個(gè)時(shí)間段飲用最佳.(參考數(shù)據(jù):)20.(12分)已知等差數(shù)列的公差為2,且,,成等比數(shù)列.(1)求的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.21.(12分)已知橢圓E的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,且經(jīng)過(guò),,三點(diǎn),求橢圓E的標(biāo)準(zhǔn)方程22.(10分)已知拋物線的焦點(diǎn)為F,以F和準(zhǔn)線上的兩點(diǎn)為頂點(diǎn)的三角形是邊長(zhǎng)為的等邊三角形,過(guò)的直線交拋物線E于A,B兩點(diǎn)(1)求拋物線E的方程;(2)是否存在常數(shù),使得,如果存在,求的值,如果不存在,請(qǐng)說(shuō)明理由;(3)證明:內(nèi)切圓的面積小于

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】根據(jù)條件可知四邊形為正方形,從而根據(jù)邊長(zhǎng)相等,列式求雙曲線的離心率.【詳解】不妨設(shè)在第一象限,則,根據(jù)題意,四邊形為正方形,于是,即,化簡(jiǎn)得,解得(負(fù)值舍去).故選:A.2、C【解析】建立空間直角坐標(biāo)系,分別得到,然后根據(jù)空間向量夾角公式計(jì)算即可.【詳解】以過(guò)點(diǎn)且垂直于平面的直線為軸,直線,分別為軸,軸,建立如圖所示的空間直角坐標(biāo)系.不妨設(shè),則根據(jù)題意可得,,,,所以,,設(shè)異面直線與所成角為,則.故選:C.3、B【解析】可得過(guò)點(diǎn)P的最長(zhǎng)弦長(zhǎng)為直徑,最短弦長(zhǎng)為過(guò)點(diǎn)P的與垂直的弦,分別求出即可得出公差.【詳解】可得過(guò)點(diǎn)P的最長(zhǎng)弦長(zhǎng)為直徑,,最短弦長(zhǎng)為過(guò)點(diǎn)P的與垂直的弦,,公差.故選:B.4、B【解析】對(duì)結(jié)論逐一判斷【詳解】對(duì)于①,則的平均數(shù)為,方差為,故①正確對(duì)于②,若兩個(gè)變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)r的絕對(duì)值越接近于1,故②錯(cuò)誤對(duì)于③,對(duì)A、B、C三種個(gè)體按3:1:2的比例進(jìn)行分層抽樣調(diào)查,若抽取的A種個(gè)體有15個(gè),則樣本容量為,故③正確故正確結(jié)論為2個(gè)故選:B5、B【解析】先根據(jù)等差數(shù)列的通項(xiàng)公式求出,然后根據(jù)等差數(shù)列的求和公式及等差數(shù)列的下標(biāo)性質(zhì)求得答案.【詳解】設(shè)等差數(shù)列的公差為d,則,則.故選:B.6、D【解析】根據(jù)給定條件求出,再計(jì)算面積列式計(jì)算作答.【詳解】依題意,點(diǎn),由雙曲線對(duì)稱性不妨取漸近線,即,則,令坐標(biāo)原點(diǎn)為O,中,,又點(diǎn)O是線段的中點(diǎn),因此,,則有,即,,,所以雙曲線的離心率為故選:D7、A【解析】建立空間直角坐標(biāo)系,用空間向量求解異面直線夾角的余弦值.【詳解】如圖,以D為坐標(biāo)原點(diǎn),DA所在直線為x軸,DC所在直線為y軸,所在直線為z軸建立空間直角坐標(biāo)系,設(shè)正方體棱長(zhǎng)為2,則,,,,則,,設(shè)異面直線與所成角為(),則.故選:A8、C【解析】先求的平方后再求解即可.【詳解】,故,故選:C9、A【解析】由視圖確定該幾何體的特征,即可得解.【詳解】由主視圖可以看出,A點(diǎn)在面上的投影為的中點(diǎn),由俯視圖可以看出C點(diǎn)在面上的投影為的中點(diǎn),所以其左視圖為如圖所示的等腰直角三角形,直角邊長(zhǎng)為,于是左視圖的面積為故選:A.10、C【解析】由,,共面,設(shè),列方程組能求出λ的值【詳解】∵,,共面,∴設(shè)(實(shí)數(shù)m、n),即,∴,解得故選:C11、A【解析】根據(jù)題意,得到兩兩垂直,以點(diǎn)為坐標(biāo)原點(diǎn),分別以為軸,建立空間直角坐標(biāo)系,設(shè),由題意,得到,,再由得到,求出點(diǎn)的軌跡,即可得出結(jié)果.【詳解】由題意,兩兩垂直,以點(diǎn)為坐標(biāo)原點(diǎn),分別以為軸,建立如圖所示的空間直角坐標(biāo)系,因?yàn)榈酌媸沁呴L(zhǎng)為的正方形,則,,因?yàn)闉榈酌鎯?nèi)的一動(dòng)點(diǎn),所以可設(shè),因此,,因?yàn)槠矫?,所以,因此,所以由得,即,整理得:,表示圓,因此,動(dòng)點(diǎn)的軌跡在圓上.故選:A.【點(diǎn)睛】本題主要考查立體幾何中的軌跡問(wèn)題,靈活運(yùn)用空間向量的方法求解即可,屬于??碱}型.12、B【解析】根據(jù)等比數(shù)列的性質(zhì)可求.【詳解】因?yàn)闉榈缺葦?shù)列,設(shè)公比為,則,解得,又,所以.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用累加法即可求出數(shù)列的通項(xiàng)公式.【詳解】因?yàn)椋?,所以,,,…,,把以上個(gè)式子相加,得,即,所以.故答案為:.14、504【解析】分兩種情況求解,一是四個(gè)數(shù)字中沒(méi)有奇數(shù),二是四個(gè)數(shù)字中有一個(gè)奇數(shù),然后根據(jù)分類(lèi)加法原理可求得結(jié)果【詳解】當(dāng)四個(gè)數(shù)字中沒(méi)有奇數(shù)時(shí),則這樣的四位數(shù)有種,當(dāng)四個(gè)數(shù)字中有一個(gè)奇數(shù)時(shí),則從5個(gè)奇數(shù)中選一個(gè)奇數(shù),再?gòu)?個(gè)偶數(shù)中選3個(gè)數(shù),然后對(duì)這4個(gè)數(shù)排列即可,所以有種,所以由分類(lèi)加法原理可得共有種,故答案為:50415、2【解析】根據(jù),由求解.【詳解】因?yàn)橄蛄浚蛄?,且,所以,解得,故答案為?16、【解析】根據(jù)向量為平面ABC的一個(gè)法向量,由求解.【詳解】因?yàn)?,,所以,又因?yàn)橄蛄繛槠矫鍭BC的一個(gè)法向量,所以,解得,所以,故答案為:三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、,【解析】先求導(dǎo)函數(shù),再根據(jù)導(dǎo)函數(shù)得到單調(diào)區(qū)間,比較極值和端點(diǎn)值,即可得到最大值和最小值.【詳解】解:依題意,,令,得或,所以函數(shù)在和上單調(diào)遞增,在上單調(diào)遞減,又,,,所以,18、(1)(2)證明見(jiàn)解析【解析】(1)根據(jù)周長(zhǎng)為8,求得a,再根據(jù)離心率求解;(2)方法一:設(shè),,得到直線和直線的方程,聯(lián)立求得Q的橫坐標(biāo),根據(jù)在橢圓上,得到,然后代入Q的橫坐標(biāo)求解;方法二:設(shè)直線,的斜率分別為k,,點(diǎn),,直線的方程為,與橢圓方程聯(lián)立,求得點(diǎn)P橫坐標(biāo),再由的直線方程聯(lián)立,得到P,Q的橫坐標(biāo)的關(guān)系求解.【小問(wèn)1詳解】解:∵的周長(zhǎng)為8,∴,即,∵離心率,∴,,∴橢圓C的標(biāo)準(zhǔn)方程為【小問(wèn)2詳解】方法一:設(shè),則直線斜率,∵,∴直線斜率,∴直線的方程為:,同理直線的方程為:,聯(lián)立上面兩直線方程,消去y,得,∵在橢圓上,∴,即,∴,∴所以與的面積之比為定值4方法二:設(shè)直線,的斜率分別為k,,點(diǎn),,則直線的方程為,∵,∴直線的方程為,將代入,得,∵P是橢圓上異于點(diǎn),的點(diǎn),∴,又∵,即,∴,即,由,得直線的方程為,聯(lián)立得,∴所以與的面積之比為定值419、(1)2分鐘的水溫為℃,3分鐘后的水溫℃;(2)證明見(jiàn)解析,,;(3)在水燒開(kāi)后4到7分鐘飲用最佳.【解析】(1)根據(jù)給定條件設(shè)第n分鐘后的水溫為,探求出與的關(guān)系即可計(jì)算作答.(2)利用(1)的信息,列式變形、推導(dǎo)即可得證,進(jìn)而求出的通項(xiàng)公式.(3)由(2)的結(jié)論列不等式,借助對(duì)數(shù)函數(shù)的性質(zhì)求解即得.【小問(wèn)1詳解】設(shè)第n分鐘后的水溫為,正比例系數(shù)為k,記,依題意,,當(dāng)時(shí),,則有,解得,因此,,即有,,所以2分鐘的水溫為℃,3分鐘后的水溫℃.小問(wèn)2詳解】由(1)知,,時(shí),,,則有,即,而,于是得是以為首項(xiàng),為公比的等比數(shù)列,則有,即,所以是等比數(shù)列,的通項(xiàng)公式是,.【小問(wèn)3詳解】由(2)及已知得:,即,整理得,兩邊取常用對(duì)數(shù)得:,而,解得,即,所以在水燒開(kāi)后4到7分鐘飲用最佳.【點(diǎn)睛】思路點(diǎn)睛:涉及實(shí)際意義給出的數(shù)列問(wèn)題,正確理解實(shí)際意義,列出關(guān)系式,再借助數(shù)列思想探求相鄰兩項(xiàng)間關(guān)系即可推理作答.20、(1)(2)【解析】(1)由,,成等比數(shù)列和,可得,解方程求出,從而可求出的通項(xiàng)公式,(2)由(1)可得,然后利用裂項(xiàng)相消法可求出【小問(wèn)1詳解】因?yàn)榈炔顢?shù)列的公差為2,所以又因?yàn)槌傻缺葦?shù)列,所以,解得,所以.【小問(wèn)2詳解】由(1)得,所以.21、【解析】分橢圓的焦點(diǎn)在軸上與焦點(diǎn)在軸上,兩種情況討論,利用待定系數(shù)法求出橢圓方程;【詳解】解:(1)當(dāng)橢圓的焦點(diǎn)在軸上時(shí),設(shè)其方程為(),則又點(diǎn)C在橢圓上,得,解得,所以橢圓E的方程為(2)當(dāng)橢圓的焦點(diǎn)在軸上時(shí),設(shè)其方程為(),則又點(diǎn)C在橢圓上,得,解得,這與矛盾綜上可知,橢圓的方程

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論