貴州省遵義鳳岡二中2023-2024學年數(shù)學高二上期末經典模擬試題含解析_第1頁
貴州省遵義鳳岡二中2023-2024學年數(shù)學高二上期末經典模擬試題含解析_第2頁
貴州省遵義鳳岡二中2023-2024學年數(shù)學高二上期末經典模擬試題含解析_第3頁
貴州省遵義鳳岡二中2023-2024學年數(shù)學高二上期末經典模擬試題含解析_第4頁
貴州省遵義鳳岡二中2023-2024學年數(shù)學高二上期末經典模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

貴州省遵義鳳岡二中2023-2024學年數(shù)學高二上期末經典模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知兩圓相交于兩點,,兩圓圓心都在直線上,則值為()A. B.C. D.2.命題“,”否定是()A., B.,C., D.,3.設變量,滿足約束條件則的最小值為()A.3 B.-3C.2 D.-24.雙曲線x21的漸近線方程是()A.y=±x B.y=±xC.y=± D.y=±2x5.已知定義在R上的函數(shù)滿足,且有,則的解集為()A. B.C. D.6.圓與圓的位置關系是()A.外離 B.外切C.相交 D.內切7.瑞士數(shù)學家歐拉(LeonhardEuler)1765年在其所著的《三角形的幾何學》一書中提出:任意三角形的外心、重心、垂心在同一條直線上.后人稱這條直線為歐拉線.已知△ABC的頂點,其歐拉線方程為,則頂點C的坐標是()A.() B.()C.() D.()8.橢圓的一個焦點坐標為,則()A.2 B.3C.4 D.89.在中,角,,所對的邊分別為,,,若,,,則A. B.2C.3 D.10.設函數(shù)在上單調遞減,則實數(shù)的取值范圍是()A. B.C. D.11.若方程表示焦點在y軸上的雙曲線,則實數(shù)m的取值范圍為()A. B.C. D.且12.已知拋物線,則其焦點到準線的距離為()A. B.C.1 D.4二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在直棱柱中,,則異面直線與所成角的余弦值為___________.14.已知拋物線與直線交于D,E兩點,若(點O為坐標原點)的面積為16,則拋物線的方程為______;過焦點F的直線l與拋物線交于A,B兩點,則______15.已知是等差數(shù)列,,,設,數(shù)列前n項的和為,則______16.某人實施一項投資計劃,從2021年起,每年1月1日,把上一年工資的10%投資某個項目.已知2020年他的工資是10萬元,預計未來十年每年工資都會逐年增加1萬元;若投資年收益是10%,一年結算一次,當年的投資收益自動轉入下一年的投資本金,若2031年1月1日結束投資計劃,則他可以一次性取出的所有投資以及收益應有__________萬元.(參考數(shù)據:,,)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知是數(shù)列的前n項和,且.(1)求數(shù)列的通項公式;(2)若,求的前n項和.18.(12分)已知點F是拋物線和橢圓的公共焦點,是與的交點,.(1)求橢圓的方程;(2)直線與拋物線相切于點,與橢圓交于,,點關于軸的對稱點為.求的最大值及相應的.19.(12分)已知等比數(shù)列的公比,且,是的等差中項.數(shù)列的前n項和為,滿足,.(1)求和的通項公式;(2)設,求的前2n項和.20.(12分)已知拋物線上的點到其焦點F的距離為5.(1)求C的方程;(2)過點的直線l交C于A,B兩點,且N為線段的中點,求直線l的方程.21.(12分)已知等比數(shù)列中,,數(shù)列滿足,(1)求數(shù)列的通項公式;(2)求證:數(shù)列為等差數(shù)列,并求前項和的最大值22.(10分)已知橢圓,其焦點為,,離心率為,若點滿足.(1)求橢圓的方程;(2)若直線與橢圓交于兩點,為坐標原點,的重心滿足:,求實數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】由相交弦的性質,可得與直線垂直,且的中點在這條直線上;由與直線垂直,可得,解可得的值,即可得的坐標,進而可得中點的坐標,代入直線方程可得;進而將、相加可得答案【詳解】根據題意,由相交弦的性質,相交兩圓的連心線垂直平分相交弦,可得與直線垂直,且的中點在這條直線上;由與直線垂直,可得,解可得,則,故中點為,且其在直線上,代入直線方程可得,1,可得;故;故選:A【點睛】方法點睛:解答圓和圓的位置關系時,要注意利用平面幾何圓的知識來分析解答.2、D【解析】根據含有量詞的命題的否定即可得出結論.【詳解】命題為全稱命題,則命題的否定為:,.故選:D.3、D【解析】轉化為,則最小即直線在軸上的截距最大,作出不等式組表示的可行域,數(shù)形結合即得解【詳解】轉化為,則最小即直線在軸上的截距最大作出不等式組表示的可行域如圖中陰影部分所示,作出直線,平移該直線,當直線經過時,在軸上的截距最大,最小,此時,故選:D4、D【解析】根據雙曲線漸近線定義即可求解.【詳解】雙曲線的方程為,雙曲線的漸近線方程為,故選:D【點睛】本題主要考查了雙曲線的簡單幾何性質,屬于容易題.5、A【解析】構造,應用導數(shù)及已知條件判斷的單調性,而題設不等式等價于即可得解.【詳解】設,則,∴R上單調遞增.又,則.∵等價于,即,∴,即所求不等式的解集為.故選:A.6、C【解析】利用圓心距與半徑的關系確定正確選項.【詳解】圓的圓心為,半徑為,圓的圓心為,半徑為,圓心距為,,所以兩圓相交.故選:C7、A【解析】根據題意,求得的外心,再根據外心的性質,以及重心的坐標,聯(lián)立方程組,即可求得結果.【詳解】因為,故的斜率,又的中點坐標為,故的垂直平分線的方程為,即,故△的外心坐標即為與的交點,即,不妨設點,則,即;又△的重心的坐標為,其滿足,即,也即,將其代入,可得,,解得或,對應或,即或,因為與點重合,故舍去.故點的坐標為.故選:A.8、D【解析】由條件可得,,,,由關系可求值.【詳解】∵橢圓方程為:,∴,∴,,∵橢圓的一個焦點坐標為,∴,又,∴,∴,故選:D.9、A【解析】利用正弦定理,可直接求出的值.【詳解】在中,由正弦定理得,所以,故選A.【點睛】本題考查利用正弦定理求邊,要記得正弦定理所適用的基本類型,考查計算能力,屬于基礎題10、B【解析】分析可知,對任意的恒成立,由參變量分離法可得出,求出在時的取值范圍,即可得出實數(shù)的取值范圍.【詳解】因為,則,由題意可知對任意的恒成立,則對任意的恒成立,當時,,.故選:B.11、A【解析】根據雙曲線定義,且焦點在y軸上,則可直接列出相關不等式.【詳解】若方程表示焦點在y軸上的雙曲線,則必有:,且解得:故選:12、B【解析】化簡拋物線的方程為,求得,即為焦點到準線的距離.【詳解】由題意,拋物線,即,解得,即焦點到準線的距離是故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】建立空間直角坐標系后求相關的向量后再用夾角公式運算即可.【詳解】如圖,以C為坐標原點,所在直線為x,y,z軸,建立空間直角坐標系,則,所以,所以,故異面直線與所成角的余弦值為,故答案為:.14、①.②.1【解析】利用的面積列方程,化簡求得的值,從而求得拋物線方程.將的斜率分成存在和不存在兩種情況進行分類討論,結合根與系數(shù)關系求得.【詳解】依題意可知,,所以,解得.所以拋物線方程為.焦點,當直線的斜率不存在時,直線的方程為,,即,此時.當直線的斜率存在且不為時,設直線的方程為,由消去并化簡得,,設,則,結合拋物線的定義可知.故答案為:;15、-3033【解析】先求得,進而得到,再利用并項法求解.【詳解】解:因為是等差數(shù)列,且,,所以,解得,所以,則,所以,,,,.故答案為:-303316、24【解析】根據條件求得每一年投入在最終結算時的總收入,利用錯位相減法求得總收入.【詳解】由題知,2021年的投入在結算時的收入為,2022年的投入在結算時的收入為,,2030年的投入在結算時的收入為,則結算時的總投資及收益為:①,則②,由①-②得,,則,故答案為:24三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)當時,化簡得到,進而得到數(shù)列的通項公式;(2)由(1)得到,結合裂項法,即可求解.【小問1詳解】解:由題意,數(shù)列的前n項和,且,當時,,當時,,滿足上式,所以數(shù)列的通項公式為.【小問2詳解】解:由,可得,所以.18、(1);(2),.【解析】(1)根據題意可得,然后根據,,計算可得,最后可得結果.(2)假設直線的方程為,根據與拋物線相切,可得,然后與橢圓聯(lián)立,計算,然后計算點到的距離,計算,利用函數(shù)性質可得結果.【詳解】(1)由題意知:,.,得:,所以.所以的方程為.(2)設直線的方程為,則由,得得:所以直線的方程為.由,得得.又,所以點到的距離為..令,則,.此時,即【點睛】本題考查直線與圓錐曲線的綜合以及三角形面積問題,本題著重考查對問題分析能力以及計算能力,屬難題.19、(1),()(2)【解析】(1)等差數(shù)列和等比數(shù)列的基本量的計算,根據條件列出方程,并解方程即可;(2)數(shù)列根據的奇偶分段表示,奇數(shù)項通過乘公比錯位相減法克求得前項和,偶數(shù)項則是通過裂項求和.【小問1詳解】由得,.又,,所以,即,解得或(舍去).所以(),當時,,當時,,經檢驗,時,適合上式,故().綜上可得:,【小問2詳解】由(1)可知,當n為奇數(shù)時,,當n為偶數(shù)時,,由題意,有①②①-②得:,則有:..故.20、(1)(2)【解析】(1)根據拋物線的定義可得,求得,即可得出答案;(2)設,利用點差法求出直線l的斜率,再利用直線的點斜式方程即可得出答案.【小問1詳解】解:由拋物線定義可知:,解得:,∴C的方程為;【小問2詳解】解:設,則,兩式作差得,∴直線l的斜率,∵為的中點,∴,∴,∴直線l的方程為,即(經檢驗,所求直線符合條件).21、(1);(2)證明見解析,10.【解析】(1)設出等比數(shù)列的公比q,利用給定條件列出方程求出q值即得;(2)將給定等式變形成,再推理計算即可作答.【詳解】(1)設等比數(shù)列的公比為q,依題意,,而,解得,所以數(shù)列的通項公式為;(2)顯然,,由得:,所以數(shù)列是以為首項,公差為-1的等差數(shù)列,其通項為,于是得,由得,而,則數(shù)列前4項都為非負數(shù),從第5項起都是負數(shù),又,因此數(shù)列前4項和與前3項和相等并且最大,其值為,所以數(shù)列前項和的最大值是10.22、(1)(2)【解析】(1)運用橢圓的離心率公式,結合橢圓的定義可得在橢圓上,代入橢圓方程,求出,,即可求橢圓的方程;(2)設出直線方程,聯(lián)立直線和橢圓方程,利用根與系數(shù)之間的關系、以及向量數(shù)量積的坐標表示進行求解即可.【小問1詳解】依

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論