湖北省黃石市育英高級中學2023年高二數學第一學期期末調研模擬試題含解析_第1頁
湖北省黃石市育英高級中學2023年高二數學第一學期期末調研模擬試題含解析_第2頁
湖北省黃石市育英高級中學2023年高二數學第一學期期末調研模擬試題含解析_第3頁
湖北省黃石市育英高級中學2023年高二數學第一學期期末調研模擬試題含解析_第4頁
湖北省黃石市育英高級中學2023年高二數學第一學期期末調研模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

湖北省黃石市育英高級中學2023年高二數學第一學期期末調研模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若拋物線的準線方程是,則拋物線的標準方程是()A. B.C. D.2.設函數,當自變量t由2變到2.5時,函數的平均變化率是()A.5.25 B.10.5C.5.5 D.113.已知命題p:,,則()A., B.,C., D.,4.已知點,則滿足點到直線的距離為,點到直線距離為的直線的條數有()A.1 B.2C.3 D.45.已知兩定點和,動點在直線上移動,橢圓C以A,B為焦點且經過點P,則橢圓C的短軸的最小值為()A. B.C. D.6.如圖,已知直線AO垂直于平面,垂足為O,BC在平面內,AB與平面所成角的大小為,,,則異面直線AB與OC所成角的余弦值為()A. B.C. D.7.已知在直角坐標系xOy中,點Q(4,0),O為坐標原點,直線l:上存在點P滿足.則實數m的取值范圍是()A. B.C. D.8.我國古代的數學名著《九章算術》中有“衰分問題”:今有女子善織,日自倍,五日織五尺,問次日織幾問?其意為:一女子每天織布的尺數是前一天的2倍,5天共織布5尺,請問第二天織布的尺數是()A. B.C. D.9.已知等差數列的公差,記該數列的前項和為,則的最大值為()A.66 B.72C.132 D.19810.已知直線和互相平行,則實數()A. B.C.或 D.或11.已知數列滿足,,數列的前n項和為,若,,成等差數列,則n=()A.6 B.8C.16 D.2212.對于函數,下列說法正確的是()A.的單調減區(qū)間為B.設,若對,使得成立,則C.當時,D.若方程有4個不等的實根,則二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓的左、右頂點分別為A,B,橢圓C的左、右焦點分別為F1,F2,點為橢圓C的下頂點,直線MA與MB的斜率之積為.(1)求橢圓C的方程;(2)設點P,Q為橢圓C上位于x軸下方的兩點,且,求四邊形面積的最大值.14.矩形ABCD中,,在CD邊上任取一點M,則的最大邊是AB的概率為______15.如圖,在棱長為2的正方體中,點分別是棱的中點,是側面正方形內一點(含邊界),若平面,則線段長度的取值范圍是__________16.某商場對華為手機近28天的日銷售情況進行統(tǒng)計,得到如下數據,t36811ym357利用最小二乘法得到日銷售量y(百部)與時間t(天)的線性回歸方程為,則表格中的數據___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系xOy中,橢圓C的左,右焦點分別為F1(﹣,0),F2(,0),且橢圓C過點(﹣).(1)求橢圓C的標準方程;(2)設過(0,﹣2)的直線l與橢圓C交于M,N兩點,O為坐標原點,若,求直線l的方程.18.(12分)在四棱錐中,平面,,,,,分別是的中點.(1)求證:平面;(2)求證:平面;(3)求直線與平面所成角的正弦值.19.(12分)已知數列的前項和為,且.數列是等比數列,,(1)求,的通項公式;(2)求數列的前項和20.(12分)已知拋物線的焦點為,直線與拋物線交于,兩點,且(1)求拋物線的方程;(2)若,是拋物線上一點,過點的直線與拋物線交于,兩點(均與點不重合),設直線,的斜率分別為,,求證:為定值21.(12分)已知函數.(1)若與在處有相同的切線,求實數的取值;(2)若時,方程在上有兩個不同的根,求實數的取值范圍.22.(10分)已知等差數列的前項和為,,且.(1)求數列的通項公式;(2)設數列的前項和為,證明:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據拋物線的準線方程,可直接得出拋物線的焦點,進而利用待定系數法求得拋物線的標準方程【詳解】準線方程為,則說明拋物線的焦點在軸的正半軸則其標準方程可設為:則準線方程為:解得:則拋物線的標準方程為:故選:D2、B【解析】利用平均變化率的公式即得.【詳解】∵,∴.故選:B.3、C【解析】由全稱命題的否定:將任意改存在并否定結論,即可寫出原命題p的否定.【詳解】由全稱命題的否定為特稱命題,∴是“,”.故選:C.4、D【解析】以為圓心,為半徑,為圓心,為半徑分別畫圓,將所求轉化為求圓與圓的公切線條數,判斷兩圓的位置關系,從而得公切線條數.【詳解】以為圓心,為半徑,為圓心,為半徑分別畫圓,如圖所示,由題意,滿足點到直線的距離為,點到直線距離為的直線的條數即為圓與圓的公切線條數,因為,所以兩圓外離,所以兩圓的公切線有4條,即滿足條件的直線有4條.故選:D【點睛】解答本題的關鍵是將滿足點到直線的距離為,點到直線距離為的直線的條數轉化為圓與圓的公切線條數,從而根據圓與圓的位置關系判斷出公切線條數.5、B【解析】根據題意,點關于直線對稱點的性質,以及橢圓的定義,即可求解.【詳解】根據題意,設點關于直線的對稱點,則,解得,即.根據橢圓的定義可知,,當、、三點共線時,長軸長取最小值,即,由且,得,因此橢圓C的短軸的最小值為.故選:B.6、B【解析】建立空間直角坐標系,求出相關點的坐標,求出向量的坐標,再利用向量的夾角公式計算即可.【詳解】如圖,以O為坐標原點,過點O作OB的垂線為x軸,OB為y軸,OA為z軸,建立空間直角坐標系,設,則,,則,,,,,設的夾角為,則,所以異面直線AB與OC所成角的余弦值為,故選:B.7、A【解析】根據給定直線設出點P的坐標,再借助列出關于的不等式,然后由不等式有解即可計算作答.【詳解】因點P在直線l:上,則設,于是有,而,因此,,即,依題意,上述關于的一元二次不等式有實數解,從而有,解得,所以實數m的取值范圍是.故選:A8、C【解析】根據等比數列求和公式求出首項即可得解.【詳解】由題可得該女子每天織布的尺數成等比數列,設其首項為,公比為,則,解得所以第二天織布的尺數為.故選:C9、A【解析】根據等差數列的公差,求得其通項公式求解.【詳解】因為等差數列的公差,所以,則,所以,由,得,所以或12時,該數列的前項和取得最大值,最大值為,故選:A10、C【解析】根據題意,結合兩直線的平行,得到且,即可求解.【詳解】由題意,直線和互相平行,可得且,即且,解得或.故選:C.11、D【解析】利用累加法求得列的通項公式,再利用裂項相消法求得數列的前n項和為,再根據,,成等差數列,得,從而可得出答案.【詳解】解:因為,且,所以當時,,因為也滿足,所以.因為,所以.若,,成等差數列,則,即,得.故選:D.12、B【解析】函數,,,,,利用導數研究函數的單調性以及極值,畫出圖象A.結合圖象可判斷出正誤;B.設函數的值域為,函數,的值域為.若對,,使得成立,可得.分別求出,,即可判斷出正誤C.由函數在單調遞減,可得函數在單調遞增,由此即可判斷出正誤;D.方程有4個不等的實根,則,且時,有2個不等的實根,由圖象即可判斷出正誤;【詳解】函數,,,,可得函數在上單調遞減,在上單調遞減,在上單調遞增,當時,,由此作出函數的大致圖象,如圖示:A.由上述分析結合圖象,可得A不正確B.設函數的值域為,函數,的值域為,對,,.,,由,若對,,使得成立,則,所以,因此B正確C.由函數在單調遞減,可得函數在單調遞增,因此當時,,即,因此C不正確;D.方程有4個不等的實根,則,且時,有2個不等的實根,結合圖象可知,因此D不正確故選:B二、填空題:本題共4小題,每小題5分,共20分。13、(1)(2)【解析】(1)由斜率之積求得,再由已知條件得,從而得橢圓方程;(2)延長QF2交橢圓于N點,連接,,設直線,,.直線方程代入橢圓方程,應用韋達定理得,結合不等式的性質、函數的單調性可得的范圍,再計算出四邊形面積得結論【小問1詳解】由題知:,,,又,∴橢圓.【小問2詳解】延長QF2交橢圓于N點,連接,,如下圖所示:,∴設直線,,.由,得,,,.,由勾形函數的單調性得,根據對稱性得:,且,,∴四邊形面積的最大值為.14、【解析】先利用勾股定理得出滿足條件的長度,再結合幾何概型的概率公式得出答案.【詳解】設,當時,,;當時,,所以當到的距離都大于時,的最大邊是AB,所以的最大邊是AB的概率為.故答案為:15、【解析】取的中點G,連接FG,BG,FB,由正方體的幾何特征,易證平面AEC//平面BFG,再根據是側面內一點(含邊界),且平面,得到點P在線段BG上運動,然后在等腰中求解.【詳解】如圖所示:取的中點G,連接FG,BG,FB,在正方體中,易得又因為平面BFG,平面BFG,所以平面BFG,同理證得平面BFG,又因為,所以平面AEC//平面BFG,因為是側面內一點(含邊界),且平面,所以點P線段BG上運動,如圖所示:在等腰中,作,且,所以,設點F到線段BG的距離為d,由等面積法得,解得,所以線段長度的取值范圍是,故答案為:16、1【解析】根據已知條件,求出,的平均值,再結合線性回歸方程過樣本中心,即可求解【詳解】解:由表中數據可得,,,線性回歸方程為,,解得故答案為:1三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)或.【解析】(1)設標準方程代入點的坐標,解方程組得解.(2)設直線方程代入橢圓方程消元,韋達定理整體思想,可得直線斜率得解.【小問1詳解】因為橢圓C的焦點為,可設橢圓C的方程為,又點在橢圓C上,所以,解得,因此,橢圓C的方程為;【小問2詳解】當直線的斜率不存在時,顯然不滿足題意;當直線的斜率存在時,設直線的方程為,設,,因為,所以,因為,,所以,所以,①聯(lián)立方程,消去得,則,代入①,得,解得,經檢驗,此時直線與橢圓相交,所以直線l的方程是或.18、(1)證明見解析;(2)證明見解析;(3).【解析】(1)根據給定條件證得即可推理作答.(2)由已知條件,以點A作原點建立空間直角坐標系,借助空間位置關系的向量證明即可作答.(3)利用(2)中信息,借助空間向量求直線與平面所成角的正弦值.【小問1詳解】在四棱錐中,因分別是的中點,則,因平面,平面,所以平面.【小問2詳解】在四棱錐中,平面,,以點A為原點,射線AB,AD,AP分別為x,y,z軸非負半軸建立空間直角坐標系,如圖,則,而且,則,,設平面的法向量,由,令,得,又,因此有,所以平面.【小問3詳解】由(2)知,,令直線與平面所成角為,則有,所以直線與平面所成角的正弦值.19、(1),(2)【解析】(1)利用求出通項公式,根據已知求出公比即可得出的通項公式;(2)利用錯位相減法可求解.【小問1詳解】因為數列的前項和為,且,當時,,當時,,滿足,所以,設等比數列的公比為,因為,,所以,解得,所以;【小問2詳解】因為,,則,兩式相減得,所以.20、(1)(2)證明見解析【解析】(1)聯(lián)立直線和拋物線方程,根據拋物線定義和焦半徑公式得到,根據韋達定理可得到最終結果;(2)代入點坐標可得到參數的值,設直線的方程為,聯(lián)立該直線和拋物線方程,,代入韋達定理可得到最終結果.【小問1詳解】設點,,點,,聯(lián)立,整理得,,由拋物線的定義知,解得,拋物線的方程為【小問2詳解】,為拋物線上一點,,即,設,,,,直線的方程為,由,消去得,,,,即為定值21、(1)(2)【解析】(1)根據導數的幾何意義求得函數在處的切線方程,再由有相同的切線這一條件即可求解;(2)先分離,再研究函數的單調性,最后運用數形結合的思想求解即可.【小問1詳解】設公切線與的圖像切于點,f'(x)=1+lnx?f由題意得:;【小問2詳解】當時,,①,①式可化為為,令令,,在上單調遞增,在上單調遞減.,當時,由題意知:22、(1);(2)證明見解析.【解析】(1)根據等差數列的性質及題干條件,可求得,代入公式,即可求得數列的通項公式;(2)由(1)可得,利用裂項相消求和法,即可求得,即可得證.【詳解】解:(1)設數列的公差為,在中,令,得,即,故①.由得,所以②.由①②解得,.所以數列的通項公式為:.(2)由(1)可得,所以,故,所以.因為,所以.【點睛】數列求和的常見方法:(1)倒序相加法:如果

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論