版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
江蘇省連云港市灌云縣2023年數(shù)學高二上期末學業(yè)質(zhì)量監(jiān)測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知圓,直線,直線l被圓O截得的弦長最短為()A. B.C.8 D.92.如圖,空間四邊形中,,,,且,,則()A. B.C. D.3.已知雙曲線的虛軸長是實軸長的2倍,則實數(shù)的值是A. B.C. D.4.已知數(shù)列為等比數(shù)列,則“,”是“為遞減數(shù)列”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件5.橢圓與(0<k<9)的()A.長軸的長相等B.短軸的長相等C.離心率相等D.焦距相等6.數(shù)列滿足,,則()A. B.C. D.27.執(zhí)行如圖所示的程序框圖,如果輸入,那么輸出的a值為()A.3 B.27C.-9 D.98.已知數(shù)列滿足,,數(shù)列的前n項和為,若,,成等差數(shù)列,則n=()A.6 B.8C.16 D.229.已知雙曲線:的左、右焦點分別為,,且,點是的右支上一點,且,,則雙曲線的方程為()A. B.C. D.10.已知,,若不等式恒成立,則正數(shù)的最小值是()A.2 B.4C.6 D.811.“”是“函數(shù)在上無極值”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件12.古希臘數(shù)學家阿波羅尼奧斯(約公元前262~公元前190年)的著作《圓錐曲線論》是古代世界光輝的科學成果,著作中有這樣一個命題:平面內(nèi)與兩定點距離的比為常數(shù)k(k>0且k≠1)的點的軌跡是圓,后人將這個圓稱為阿波羅尼斯圓.已知O(0,0),A(3,0),動點P(x,y)滿,則動點P軌跡與圓的位置關(guān)系是()A.相交 B.相離C.內(nèi)切 D.外切二、填空題:本題共4小題,每小題5分,共20分。13.已知曲線的焦距是10,曲線上的點到一個焦點的距離是2,則點到另一個焦點的距離為__________.14.若點P為雙曲線上任意一點,則P滿足性質(zhì):點P到右焦點的距離與它到直線的距離之比為離心率e,若C的右支上存在點Q,使得Q到左焦點的距離等于它到直線的距離的6倍,則雙曲線的離心率的取值范圍是______15.設(shè)雙曲線C:的焦點為,點為上一點,,則為_____.16.已知O為坐標原點,橢圓T:,過橢圓上一點P的兩條直線PA,PB分別與橢圓交于A,B,設(shè)PA,PB的中點分別為D,E,直線PA,PB的斜率分別是,,若直線OD,OE的斜率之和為2,則的最大值為_______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓,斜率為的動直線與橢圓交于A,B兩點,且直線與圓相切.(1)若,求直線的方程;(2)求三角形的面積的取值范圍.18.(12分)已知函數(shù)的圖象在處的切線方程為.(1)求的解析式;(2)若關(guān)于的方程在上有解,求的取值范圍.19.(12分)如圖,在幾何體ABCEFG中,四邊形ACGE為平行四邊形,為等邊三角形,四邊形BCGF為梯形,H為線段BF的中點,,,,,,.(1)求證:平面平面BCGF;(2)求平面ABC與平面ACH夾角的余弦值.20.(12分)如圖,拋物線的頂點在原點,圓的圓心恰是拋物線的焦點.(1)求拋物線的方程;(2)一條直線的斜率等于2,且過拋物線焦點,它依次截拋物線和圓于、、、四點,求的值.21.(12分)已知為數(shù)列的前n項和,,且,,其中為常數(shù).(1)求證:數(shù)列為等差數(shù)列;(2)是否存在,使得是等差數(shù)列?并說明理由.22.(10分)已知函數(shù).(1)若,求函數(shù)在處的切線方程;(2)討論函數(shù)在上的單調(diào)性.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】先求得直線過定點,再根據(jù)當點與圓心連線垂直于直線l時,被圓O截得的弦長最短求解.【詳解】因為直線方程,即為,所以直線過定點,因為點在圓的內(nèi)部,當點與圓心連線垂直于直線l時,被圓O截得的弦長最短,點與圓心(0,0)的距離為,此時,最短弦長為,故選:B2、C【解析】根據(jù)空間向量的線性運算即可求解.【詳解】因為,又因為,,所以.故選:C3、C【解析】由方程表示雙曲線知,又雙曲線的虛軸長是實軸長的2倍,所以,即,所以故選C.考點:雙曲線的標準方程與簡單幾何性質(zhì).4、A【解析】本題可依次判斷“,”是否是“為遞減數(shù)列”的充分條件以及必要條件,即可得出結(jié)果.【詳解】若等比數(shù)列滿足、,則數(shù)列為遞減數(shù)列,故“,”是“為遞減數(shù)列”的充分條件,因為若等比數(shù)列滿足、,則數(shù)列也是遞減數(shù)列,所以“,”不是“為遞減數(shù)列”的必要條件,綜上所述,“,”是“為遞減數(shù)列”的充分不必要條件,故選:A.【點睛】本題考查充分條件以及必要條件的判定,考查等比數(shù)列以及遞減數(shù)列的相關(guān)性質(zhì),體現(xiàn)了基礎(chǔ)性和綜合性,考查推理能力,是簡單題.5、D【解析】根據(jù)橢圓方程求得兩個橢圓的,由此確定正確選項.【詳解】橢圓與(0<k<9)的焦點分別在x軸和y軸上,前者a2=25,b2=9,則c2=16,后者a2=25-k,b2=9-k,則顯然只有D正確故選:D6、C【解析】根據(jù)已知分析數(shù)列周期性,可得答案【詳解】解:∵數(shù)列滿足,,∴,,,,故數(shù)列以4為周期呈現(xiàn)周期性變化,由,故,故選C【點睛】本題考查的知識點是數(shù)列的遞推公式,數(shù)列的周期性,難度中檔7、B【解析】分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是利用循環(huán)累乘值,并判斷滿足時輸出的值【詳解】解:模擬執(zhí)行程序框圖,可得,時,不滿足條件,;不滿足條件,;不滿足條件,;滿足條件,退出循環(huán),輸出的值為27故選:8、D【解析】利用累加法求得列的通項公式,再利用裂項相消法求得數(shù)列的前n項和為,再根據(jù),,成等差數(shù)列,得,從而可得出答案.【詳解】解:因為,且,所以當時,,因為也滿足,所以.因為,所以.若,,成等差數(shù)列,則,即,得.故選:D.9、B【解析】畫出圖形,利用已知條件轉(zhuǎn)化求解,關(guān)系,利用,解得,即可得到雙曲線的方程【詳解】由題意雙曲線的圖形如圖,連接與軸交于點,設(shè),,因為,所以,因為,所以,則,因為點是的右支上一點,所以,所以,則,因為,所以,,由勾股定理可得:,即,解得,則,所以雙曲線的方程為:故選:B10、B【解析】由基本不等式求出的最小值,只需最小值大于等于18,得到關(guān)于的不等式,求解,即可得出結(jié)論.【詳解】,因為不等式恒成立,所以,即,解得,所以.故選:B.【點睛】本題考查基本不等式的應(yīng)用,考查一元二次不等式的解法,屬于基礎(chǔ)題.11、B【解析】根據(jù)極值的概念,可知函數(shù)在上無極值,則方程的,再根據(jù)充分、必要條件判斷,即可得到結(jié)果.【詳解】由題意,可得,若函數(shù)在上無極值,所以對于方程,,解得.所以“”是“函數(shù)在上無極值”的必要不充分條件.故選:B.12、A【解析】首先求得點的軌跡,再利用圓心距與半徑的關(guān)系,即可判斷兩圓的位置關(guān)系.【詳解】由條件可知,,化簡為:,動點的軌跡是以為圓心,2為半徑的圓,圓是以為圓心,為半徑的圓,兩圓圓心間的距離,所以兩圓相交.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、或10.【解析】對參數(shù)a進行討論,考慮曲線是橢圓和雙曲線的情況,進而結(jié)合橢圓與雙曲線的定義和性質(zhì)求得答案.【詳解】由題意,曲線的半焦距為5,若曲線是焦點在x軸上的橢圓,則a>16,所以,而橢圓上的點到一個焦點距離是2,則點到另一個焦點的距離為;若曲線是焦點在y軸上的橢圓,則0<a<16,所以,舍去;若曲線是雙曲線,則a<0,容易判斷雙曲線的焦點在y軸,所以,不妨設(shè)點P在雙曲線的上半支,上下焦點分別為,因為實半軸長為4,容易判斷點P到下焦點的距離的最小值為4+5=9>2,不合題意,所以點P到上焦點的距離為2,則它到下焦點的距離.故答案為:或10.14、【解析】若Q到的距離為有,由題設(shè)有,結(jié)合雙曲線離心率的性質(zhì),即可求離心率的范圍.【詳解】由題意,,即,整理有,所以或,若Q到的距離為,則Q到左、右焦點的距離分別為、,又Q在C的右支上,所以,則,又,綜上,雙曲線的離心率的取值范圍是.故答案為:【點睛】關(guān)鍵點點睛:若Q到的距離為,根據(jù)給定性質(zhì)有Q到左、右焦點的距離分別為、,再由雙曲線性質(zhì)及已知條件列不等式組求離心率范圍.15、14【解析】利用雙曲線的定義求解即可【詳解】由,得,則,因為點為上一點,所以,因為,所以,解得或(舍去),故答案為:1416、【解析】設(shè)的坐標,用點差法求和與的關(guān)系同,與的關(guān)系,然后表示出,求得最大值【詳解】設(shè),,,則,兩式相減得,∴,,則,同理,,又,∴,,當且僅當,即時等號成立,∴,故答案為:【點睛】方法點睛:本題考查直線與橢圓相交問題,考查橢圓弦中點問題.橢圓中涉及到弦的中點時,常常用點差法確定關(guān)系,即設(shè)弦端點為,弦中點為,把兩點坐標代入橢圓方程,相減后可得三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)或(2)【解析】(1)設(shè)直線,利用圓心到直線的距離等于半徑,即可得到方程,求出,即可得解;(2)設(shè),,,利用圓心到直線的距離等于半徑,得到,再聯(lián)立直線與橢圓方程,消元列出韋達定理,利用弦長公式表示出,再根據(jù)及基本不等式求出,最后再計算直線斜率不存在時三角形的面積,即可得解;【小問1詳解】解:圓,圓心為,半徑;設(shè)直線,即,則,解得,所以或;【小問2詳解】解:因為直線的斜率存在,設(shè),,,即,則,所以,即,聯(lián)立,消元整理得,所以,,所以所以因為,所以,當且僅當,即時取等號,所以,當軸時,取,,則,此時,所以;18、(1)(2)【解析】(1)求,由條件可得,得出關(guān)于的方程組,求解可得;(2)令,注意,所以在具有單調(diào)性時,則方程無解,求,對分類討論,求出單調(diào)區(qū)間,結(jié)合函數(shù)值的變化趨勢,即可求得結(jié)論.【詳解】解:(1),因為,所以,解得,,所以.(2)令,則.令,則在上單調(diào)遞增.當,即時,,所以單調(diào)遞增,又,所以;當,即時,則存在,使得,所以函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,又,則.當時,,所以在上有解.綜上,的取值范圍為.【點睛】本題考查導(dǎo)數(shù)的幾何意義求參數(shù),考查導(dǎo)數(shù)的綜合應(yīng)用,涉及到單調(diào)區(qū)間、函數(shù)零點的問題,考查分類討論思想,屬于較難題.19、(1)證明見解析(2)【解析】(1)在中,由正弦定理知可知,利用三角形內(nèi)角和可知即,又因為,再根據(jù)面面垂直的判定定理,即可證明結(jié)果;(2)取BC中點O,由(1)得:平面BCGF,,以O(shè)為原點,OB,OH,OA所在直線分別為x軸、y軸、z軸,建立空間直角坐標系,利用空間向量求二面角,即可求出結(jié)果.【小問1詳解】證明:(1)在中,由正弦定理知:解得因為,所以又因為,所以所以又因為,所以直線平面ABC又因為平面BCGF所以平面平面BCGF【小問2詳解】解:取BC中點O,連結(jié)OA,OH,由(1)得:平面BCGF,則以O(shè)為原點,OB,OH,OA所在直線分別為x軸、y軸、z軸,建立如圖所示的空間直角坐標系在中,則,,平面ABC的一個法向量為設(shè)平面ACH的一個法向量為因為,所以,取,則設(shè)平面APD與平面PDF夾角為,所以.20、(1)圓的圓心坐標為,即拋物線的焦點為,……3分∴∴拋物線方程為……6分
由題意知直線AD的方程為…7分即代入得=0設(shè),則,……11分∴【解析】(1)設(shè)拋物線方程為,由題意求出其焦點坐標,進而可求出結(jié)果;(2)先由題意得出直線的方程,聯(lián)立直線與拋物線方程,求出,再由為圓的直徑,即可求出結(jié)果.【詳解】(1)設(shè)拋物線方程為,圓的圓心恰是拋物線的焦點,∴.拋物線方程為:;(2)依題意直線的方程為設(shè),,則,得,,.【點睛】本題主要考查拋物線的方程,以及直線與拋物線的位置關(guān)系;由拋物線的焦點坐標可直接求出拋物線的方程;聯(lián)立直線與拋物線方程,結(jié)合韋達定理和拋物線定義可求出弦長,進而可求出結(jié)果,屬于??碱}型.21、(1)詳見解析;(2)存在時是等差數(shù)列,詳見解析.【解析】(1)利用與的關(guān)系可得,再結(jié)合條件即證;(2)由題可得,,若是等差數(shù)列,可得,進而可求數(shù)列的通項公式,即證.【小問1詳解】∵,∴,∴,又,∴,∴,∴數(shù)列為等差數(shù)列;【小問2詳解】∵,,∴,又,∴,若是等差數(shù)列,則,即,解得,當時,由,∴數(shù)列的奇數(shù)項構(gòu)成的數(shù)列為首項為1,公差為2的等差數(shù)列,∴,即,為奇數(shù),∴數(shù)列
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 買青山合同范例
- 房屋轉(zhuǎn)讓維修合同范例
- 2025房屋抵押反擔保合同
- 中考數(shù)學一輪考點復(fù)習精講精練專題02 二次根式【考點精講】(解析版)
- 短期吊車出租合同范例
- 物流門店轉(zhuǎn)讓合同范例
- 2025工業(yè)產(chǎn)品設(shè)計合同
- 策劃布置場地合同范例
- 泥土砌墻合同范例
- 2025正規(guī)正規(guī)借款合同模板
- 2024年中國航空油料有限公司招聘筆試參考題庫含答案解析
- 2024年安徽新華書店有限公司招聘筆試參考題庫含答案解析
- 洪水與汛期監(jiān)測和預(yù)警系統(tǒng)
- 足月小樣兒護理查房課件
- 2024年生產(chǎn)主管的挑戰(zhàn)與機遇
- 20以內(nèi)進位加法100題(精心整理6套-可打印A4)
- 揚州育才小學2023-2024一年級上冊數(shù)學期末復(fù)習卷(一)及答案
- 澳大利亞英文版介紹
- 04某污水處理廠630kW柔性支架光伏發(fā)電項目建議書
- 山中初唐王勃1
- 化妝品功效評價
評論
0/150
提交評論