江西省撫州市臨川第一中學(xué)2023-2024學(xué)年數(shù)學(xué)高二上期末考試模擬試題含解析_第1頁(yè)
江西省撫州市臨川第一中學(xué)2023-2024學(xué)年數(shù)學(xué)高二上期末考試模擬試題含解析_第2頁(yè)
江西省撫州市臨川第一中學(xué)2023-2024學(xué)年數(shù)學(xué)高二上期末考試模擬試題含解析_第3頁(yè)
江西省撫州市臨川第一中學(xué)2023-2024學(xué)年數(shù)學(xué)高二上期末考試模擬試題含解析_第4頁(yè)
江西省撫州市臨川第一中學(xué)2023-2024學(xué)年數(shù)學(xué)高二上期末考試模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩9頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

江西省撫州市臨川第一中學(xué)2023-2024學(xué)年數(shù)學(xué)高二上期末考試模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.過(guò)拋物線的焦點(diǎn)F的直線l與拋物線交于PQ兩點(diǎn),若以線段PQ為直徑的圓與直線相切,則()A.8 B.7C.6 D.52.已知向量是兩兩垂直的單位向量,且,則()A.5 B.1C.-1 D.73.已知空間向量,,且與互相垂直,則k的值是()A.1 B.C. D.4.若“”是“”的充分不必要條件,則實(shí)數(shù)a的取值范圍為A. B.或C. D.5.過(guò)點(diǎn)且垂直于直線的直線方程是()A. B.C. D.6.在空間直角坐標(biāo)系中,點(diǎn)關(guān)于平面的對(duì)稱(chēng)點(diǎn)為,則()A.-4 B.-10C.4 D.107.若函數(shù)恰好有個(gè)不同的零點(diǎn),則的取值范圍是()A. B.C. D.8.在空間直角坐標(biāo)系中,點(diǎn)關(guān)于軸對(duì)稱(chēng)的點(diǎn)的坐標(biāo)為()A. B.C. D.9.已知函數(shù)對(duì)于任意的滿(mǎn)足,其中是函數(shù)的導(dǎo)函數(shù),則下列各式正確的是()A. B.C. D.10.已知拋物線的焦點(diǎn)為F,直線l經(jīng)過(guò)點(diǎn)F交拋物線C于A,B兩點(diǎn),交拋物淺C的準(zhǔn)線于點(diǎn)P,若,則為()A.2 B.3C.4 D.611.已知三角形三個(gè)頂點(diǎn)為、、,則邊上的高所在直線的方程為()A. B.C. D.12.函數(shù)的導(dǎo)函數(shù)為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某教師組織本班學(xué)生開(kāi)展課外實(shí)地測(cè)量活動(dòng),如圖是要測(cè)山高.現(xiàn)選擇點(diǎn)A和另一座山頂點(diǎn)C作為測(cè)量觀測(cè)點(diǎn),從A測(cè)得點(diǎn)M的仰角,點(diǎn)C的仰角,測(cè)得,,已知另一座山高米,則山高_(dá)______米.14.已知平面的法向量分別為,,若,則的值為_(kāi)__15.雙曲線的右焦點(diǎn)到C的漸近線的距離為,則C漸近線方程為_(kāi)_____16.在的展開(kāi)式中,含項(xiàng)的系數(shù)為_(kāi)_____(結(jié)果用數(shù)值表示)三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)求下列函數(shù)的導(dǎo)數(shù)(1);(2)18.(12分)在等差數(shù)列中,已知公差,前項(xiàng)和(其中)(1)求;(2)求和:19.(12分)已知橢圓的離心率為,右焦點(diǎn)為F,且E上一點(diǎn)P到F的最大距離3(1)求橢圓E的方程;(2)若A,B為橢圓E上的兩點(diǎn),線段AB過(guò)點(diǎn)F,且其垂直平分線交x軸于H點(diǎn),,求20.(12分)已知數(shù)列的前n項(xiàng)和為,且(1)證明數(shù)列是等比數(shù)列,并求出數(shù)列的通項(xiàng)公式;(2)在與之間插入n個(gè)數(shù),使得包括與在內(nèi)的這個(gè)數(shù)成等差數(shù)列,其公差為,求數(shù)列的前n項(xiàng)和21.(12分)已知圓C1圓心為坐標(biāo)原點(diǎn),且與直線相切(1)求圓C1的標(biāo)準(zhǔn)方程;(2)若直線l過(guò)點(diǎn)M(1,2),直線l被圓C1所截得的弦長(zhǎng)為,求直線l的方程22.(10分)已知拋物線,過(guò)點(diǎn)作直線(1)若直線的斜率存在,且與拋物線只有一個(gè)公共點(diǎn),求直線的方程(2)若直線過(guò)拋物線的焦點(diǎn),且交拋物線于兩點(diǎn),求弦長(zhǎng)

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】依據(jù)拋物線定義可以證明:以過(guò)拋物線焦點(diǎn)F的弦PQ為直徑的圓與其準(zhǔn)線相切,則可以順利求得線段的長(zhǎng).【詳解】拋物線的焦點(diǎn)F,準(zhǔn)線取PQ中點(diǎn)H,分別過(guò)P、Q、H作拋物線準(zhǔn)線的垂線,垂足分別為N、M、E則四邊形為直角梯形,為梯形中位線,由拋物線定義可知,,,則故,即點(diǎn)H到拋物線準(zhǔn)線的距離為的一半,則以線段PQ為直徑的圓與拋物線的準(zhǔn)線相切.又以線段PQ為直徑的圓與直線相切,則以線段PQ為直徑的圓的直徑等于直線與直線間的距離.即故選:C2、B【解析】根據(jù)單位向量的定義和向量的乘法運(yùn)算計(jì)算即可.【詳解】因?yàn)橄蛄渴莾蓛纱怪钡膯挝幌蛄浚宜?故選:B3、D【解析】由=0可求解【詳解】由題意,故選:D4、D【解析】“”是“”的充分不必要條件,結(jié)合集合的包含關(guān)系,即可求出的取值范圍.【詳解】∵“”是“”的充分不必要條件∴或∴故選:D.【點(diǎn)睛】本題考查充分必要條件,根據(jù)充要條件求解參數(shù)的范圍時(shí),可把充分條件、必要條件或充要條件轉(zhuǎn)化為集合間的關(guān)系,由此得到不等式(組)后再求范圍.解題時(shí)要注意,在利用兩個(gè)集合之間的關(guān)系求解參數(shù)的取值范圍時(shí),不等式是否能夠取等號(hào)決定端點(diǎn)值的取舍,處理不當(dāng)容易出現(xiàn)漏解或增解的現(xiàn)象.5、A【解析】根據(jù)所求直線垂直于直線,設(shè)其方程為,然后將點(diǎn)代入求解.【詳解】因?yàn)樗笾本€垂直于直線,所以設(shè)其方程為,又因?yàn)橹本€過(guò)點(diǎn),所以,解得所以直線方程為:,故選:A.6、A【解析】根據(jù)關(guān)于平面對(duì)稱(chēng)的點(diǎn)的規(guī)律:橫坐標(biāo)、縱坐標(biāo)保持不變,豎坐標(biāo)變?yōu)樗南喾磾?shù),即可求出點(diǎn)關(guān)于平面的對(duì)稱(chēng)點(diǎn)的坐標(biāo),再利用向量的坐標(biāo)運(yùn)算求.【詳解】解:由題意,關(guān)于平面對(duì)稱(chēng)的點(diǎn)橫坐標(biāo)、縱坐標(biāo)保持不變,豎坐標(biāo)變?yōu)樗南喾磾?shù),從而有點(diǎn)關(guān)于對(duì)稱(chēng)的點(diǎn)的坐標(biāo)為(2,?1,-3).故選:A【點(diǎn)睛】本題以空間直角坐標(biāo)系為載體,考查點(diǎn)關(guān)于面的對(duì)稱(chēng),考查數(shù)量積的坐標(biāo)運(yùn)算,屬于基礎(chǔ)題7、D【解析】分析可知,直線與函數(shù)的圖象有個(gè)交點(diǎn),利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性與極值,數(shù)形結(jié)合可求得實(shí)數(shù)的取值范圍.【詳解】令,可得,構(gòu)造函數(shù),其中,由題意可知,直線與函數(shù)的圖象有個(gè)交點(diǎn),,由,可得或,列表如下:增極大值減極小值增所以,,,作出直線與函數(shù)的圖象如下圖所示:由圖可知,當(dāng)時(shí),即當(dāng)時(shí),直線與函數(shù)的圖象有個(gè)交點(diǎn),即函數(shù)有個(gè)零點(diǎn).故選:D.8、B【解析】結(jié)合已知條件,利用對(duì)稱(chēng)的概念即可求解.【詳解】不妨設(shè)點(diǎn)關(guān)于軸對(duì)稱(chēng)的點(diǎn)的坐標(biāo)為,則線段垂直于軸且的中點(diǎn)在軸,從而點(diǎn)關(guān)于軸對(duì)稱(chēng)的點(diǎn)的坐標(biāo)為.故選:B.9、C【解析】令,結(jié)合題意可得,利用導(dǎo)數(shù)討論函數(shù)的單調(diào)性,進(jìn)而得出,變形即可得出結(jié)果.【詳解】令,則,又,所以,令,令,所以函數(shù)在上單調(diào)遞減,在單調(diào)遞增,所以,即,則.故選:C10、C【解析】由題意可知設(shè),由可得,可求得,,根據(jù)模長(zhǎng)公式計(jì)算即可得出結(jié)果.【詳解】由題意可知,準(zhǔn)線方程為,設(shè),可知,,解得:,代入到拋物線方程可得:.,故選:C11、A【解析】求出直線的斜率,可求得邊上的高所在直線的斜率,利用點(diǎn)斜式可得出所求直線的方程.【詳解】直線的斜率為,故邊上的高所在直線的斜率為,因此,邊上的高所在直線的方程為.故選:A.12、B【解析】利用復(fù)合函數(shù)求導(dǎo)法則即可求導(dǎo).【詳解】,故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用正弦定理可求出各個(gè)三角形的邊長(zhǎng),進(jìn)而求出山高.【詳解】解:在中,,,,可得在中,,所以由正弦定理可得:即,得在直角中,所以故答案為:.14、【解析】由平面互相垂直可知其對(duì)應(yīng)的法向量也垂直,然后用空間向量垂直的坐標(biāo)運(yùn)算求解即可.【詳解】∵,∴平面的法向量互相垂直,∴,即,解得,故答案為:.15、【解析】根據(jù)給定條件求出雙曲線漸近線,再用點(diǎn)到直線的距離公式計(jì)算作答【詳解】雙曲線的漸近線為:,即,依題意,,即,解得,所以C漸近線方程為.故答案為:16、12【解析】通過(guò)二次展開(kāi)式就可以得到.【詳解】的展開(kāi)式中含含項(xiàng)的系數(shù)為故答案為:12三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)見(jiàn)解析(2)見(jiàn)解析【解析】(1)導(dǎo)數(shù)四則運(yùn)算中的乘除法則.(2)求導(dǎo)數(shù),主要考查復(fù)合函數(shù),外導(dǎo)乘內(nèi)導(dǎo).【小問(wèn)1詳解】【小問(wèn)2詳解】.18、(1)12(2)18【解析】(1)根據(jù)已知的,利用等差數(shù)列的通項(xiàng)公式和前n項(xiàng)和公式即可列式求解;(2)由第(1)問(wèn)中求解出的的通項(xiàng)公式,要求前12項(xiàng)絕對(duì)值的和,可以發(fā)現(xiàn),該數(shù)列前6項(xiàng)為正項(xiàng),后6項(xiàng)為負(fù)項(xiàng),因此在算和的時(shí)候,后6項(xiàng)和可以取原通項(xiàng)公式的相反數(shù)即可計(jì)算,即為,然后再加上前6項(xiàng)和,即為要求的前12項(xiàng)絕對(duì)值的和.【小問(wèn)1詳解】由題意可得,在等差數(shù)列中,已知公差,前項(xiàng)和所以,解之得,所以n=12【小問(wèn)2詳解】由(1)可知數(shù)列{an}的通項(xiàng)公式為,所以即19、(1);(2)【解析】(1)根據(jù)離心率和最大距離建立等式即可求解;(2)根據(jù)弦長(zhǎng),求出直線方程,解出點(diǎn)的坐標(biāo)即可得解.【詳解】(1)橢圓的離心率為,右焦點(diǎn)為F,且E上一點(diǎn)P到F的最大距離3,所以,所以,所以橢圓E的方程;(2)A,B為橢圓E上的兩點(diǎn),線段AB過(guò)點(diǎn)F,且其垂直平分線交x軸于H點(diǎn),所以線段AB所在直線斜率一定存在,所以設(shè)該直線方程代入,整理得:,設(shè),,,整理得:,當(dāng)時(shí),線段中點(diǎn)坐標(biāo),中垂線方程:,;當(dāng)時(shí),線段中點(diǎn)坐標(biāo),中垂線方程:,,綜上所述:.20、(1)證明見(jiàn)解析,(2)【解析】(1)根據(jù)公式得到,得到,再根據(jù)等比數(shù)列公式得到答案.(2)根據(jù)等差數(shù)列定義得到,再利用錯(cuò)位相減法計(jì)算得到答案.【小問(wèn)1詳解】,當(dāng)時(shí),,得到;當(dāng)時(shí),,兩式相減得到,整理得到,即,故,數(shù)列是首項(xiàng)為,公比為的等比數(shù)列,,即,驗(yàn)證時(shí)滿(mǎn)足條件,故.【小問(wèn)2詳解】,故,,,兩式相減得到:,整理得到:,故.21、(1)(2)或【解析】(1)由圓心到直線的距離求得半徑,可得圓C1的標(biāo)準(zhǔn)方程;(2)當(dāng)直線的斜率不存在時(shí),求得直線l被圓C1所截得的弦長(zhǎng)為,符合題意;當(dāng)直線l的斜率存在時(shí),設(shè)出直線方程,由已知弦長(zhǎng)可得圓心到直線的距離,再由點(diǎn)到直線的距離公式列式求k,則直線方程可求【小問(wèn)1詳解】∵原點(diǎn)O到直線的距離為,∴圓C1的標(biāo)準(zhǔn)方程為;【小問(wèn)2詳解】當(dāng)直線l的斜率不存在時(shí),直線方程為x=1,代入,得,即直線l被圓C1所截得的弦長(zhǎng)為,符合題意;當(dāng)直線l的斜率存在時(shí),設(shè)直線方程為,即∵直線l被圓C1所截得的弦長(zhǎng)為,圓的半徑為2,則圓心到直線l的距離,解得∴直線l的方程為,即綜上

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論