江西省九江市重點(diǎn)中學(xué)2024屆高二上數(shù)學(xué)期末復(fù)習(xí)檢測(cè)模擬試題含解析_第1頁(yè)
江西省九江市重點(diǎn)中學(xué)2024屆高二上數(shù)學(xué)期末復(fù)習(xí)檢測(cè)模擬試題含解析_第2頁(yè)
江西省九江市重點(diǎn)中學(xué)2024屆高二上數(shù)學(xué)期末復(fù)習(xí)檢測(cè)模擬試題含解析_第3頁(yè)
江西省九江市重點(diǎn)中學(xué)2024屆高二上數(shù)學(xué)期末復(fù)習(xí)檢測(cè)模擬試題含解析_第4頁(yè)
江西省九江市重點(diǎn)中學(xué)2024屆高二上數(shù)學(xué)期末復(fù)習(xí)檢測(cè)模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

江西省九江市重點(diǎn)中學(xué)2024屆高二上數(shù)學(xué)期末復(fù)習(xí)檢測(cè)模擬試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.空氣質(zhì)量指數(shù)大小分為五級(jí)指數(shù)越大說明污染的情況越嚴(yán)重,對(duì)人體危害越大,指數(shù)范圍在:,,,,分別對(duì)應(yīng)“優(yōu)”、“良”、“輕中度污染”、“中度重污染”、“重污染”五個(gè)等級(jí),如圖是某市連續(xù)14天的空氣質(zhì)量指數(shù)趨勢(shì)圖,下面說法錯(cuò)誤的是().A.這14天中有4天空氣質(zhì)量指數(shù)為“良”B.從2日到5日空氣質(zhì)量越來越差C.這14天中空氣質(zhì)量的中位數(shù)是103D.連續(xù)三天中空氣質(zhì)量指數(shù)方差最小是9日到11日2.?dāng)?shù)列,,,,…的一個(gè)通項(xiàng)公式為()A. B.C. D.3.雙曲線的左焦點(diǎn)到其漸近線的距離是()A. B.C. D.4.從某個(gè)角度觀察籃球(如圖甲),可以得到一個(gè)對(duì)稱的平面圖形,如圖乙所示,籃球的外輪廓為圓,將籃球表面的粘合線視為坐標(biāo)軸和雙曲線,若坐標(biāo)軸和雙曲線與圓的交點(diǎn)將圓的周長(zhǎng)八等分,且,則該雙曲線的離心率為()A. B.C.2 D.5.學(xué)校為了解學(xué)生在課外讀物方面的支出情況,抽取了n位同學(xué)進(jìn)行調(diào)查,結(jié)果顯示這些同學(xué)的支出都在(單位:元)內(nèi),其中支出在(單位:元)內(nèi)的同學(xué)有67人,其頻率分布直方圖如圖所示,則n的值為()A.100 B.120C.130 D.3906.中國(guó)古代有一道數(shù)學(xué)題:“今有七人差等均錢,甲、乙均七十七文,戊、己、庚均七十五文,問戊、己各若干?”意思是甲、乙、丙、丁、戊、己、庚七個(gè)人分錢,所分得的錢數(shù)構(gòu)成等差數(shù)列,甲、乙兩人共分得77文,戊、己、庚三人共分得75文,則戊、己兩人各分得多少文錢?則下列說法正確的是()A.戊分得34文,己分得31文 B.戊分得31文,己分得34文C.戊分得28文,己分得25文 D.戊分得25文,己分得28文7.漸近線方程為的雙曲線的離心率是()A.1 B.C. D.28.已知、分別為雙曲線的左、右焦點(diǎn),且,點(diǎn)P為雙曲線右支一點(diǎn),為的內(nèi)心,若成立,給出下列結(jié)論:①點(diǎn)的橫坐標(biāo)為定值a;②離心率;③;④當(dāng)軸時(shí),上述結(jié)論正確的是()A.①② B.②③C.①②③ D.②③④9.過點(diǎn)的直線在兩坐標(biāo)軸上的截距之和為零,則該直線方程為()A. B.C.或 D.或10.已知拋物線的焦點(diǎn)為,拋物線的焦點(diǎn)為,點(diǎn)在上,且,則直線的斜率為A. B.C. D.11.直線的傾斜角為()A.0 B.C. D.12.在正方體ABCD-A1B1C1D1中,棱長(zhǎng)為a,M,N分別為A1B和AC上的點(diǎn),A1M=AN=,則MN與平面BB1C1C的位置關(guān)系是()A.相交 B.平行C.垂直 D.不能確定二、填空題:本題共4小題,每小題5分,共20分。13.在空間直角坐標(biāo)系中,若三點(diǎn)、、滿足,則實(shí)數(shù)的值為__________.14.已知函數(shù)的圖象上有一點(diǎn),則曲線在點(diǎn)處的切線方程為______.15.某人有樓房一棟,室內(nèi)面積共計(jì),擬分割成兩類房間作為旅游客房,大房間每間面積為,可住游客4名,每名游客每天的住宿費(fèi)100元;小房間每間面積為,可住游客2名,每名游客每天的住宿費(fèi)150元;裝修大房間每間需要3萬元,裝修小房間每間需要2萬元.如果他只能籌款25萬元用于裝修,且假定游客能住滿客房,則該人一天能獲得的住宿費(fèi)的最大值為___________元.16.已知函數(shù)(1)求函數(shù)的單調(diào)區(qū)間;(2)設(shè)上存在極大值M,證明:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在棱長(zhǎng)為的正方體中,為中點(diǎn)(1)求二面角的大?。唬?)探究線段上是否存在點(diǎn),使得平面?若存在,確定點(diǎn)的位置;若不存在,說明理由18.(12分)如圖,在正方體中,是棱的中點(diǎn).(1)試判斷直線與平面的位置關(guān)系,并說明理由;(2)求證:直線面.19.(12分)已知數(shù)列的前項(xiàng)和,數(shù)列是各項(xiàng)均為正數(shù)的等比數(shù)列,其中,且成等差數(shù)列.(1)求的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.20.(12分)如圖,四邊形是一塊邊長(zhǎng)為4km正方形地域,地域內(nèi)有一條河流,其經(jīng)過的路線是以中點(diǎn)為頂點(diǎn)且開口向右的拋物線的一部分(河流寬度忽略不計(jì)),某公司準(zhǔn)備投資一個(gè)大型矩形游樂場(chǎng).(1)設(shè),矩形游樂園的面積為,求與之間的函數(shù)關(guān)系;(2)試求游樂園面積的最大值.21.(12分)已知圓,圓,動(dòng)圓與圓外切,且與圓內(nèi)切.(1)求動(dòng)圓圓心的軌跡的方程,并說明軌跡是何種曲線;(2)設(shè)過點(diǎn)的直線與直線交于兩點(diǎn),且滿足的面積是面積的一半,求的面積22.(10分)已知兩個(gè)定點(diǎn),,動(dòng)點(diǎn)滿足,設(shè)動(dòng)點(diǎn)的軌跡為曲線,直線:(1)求曲線的軌跡方程;(2)若與曲線交于不同的、兩點(diǎn),且(為坐標(biāo)原點(diǎn)),求直線的斜率;

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】根據(jù)題圖分析數(shù)據(jù),對(duì)選項(xiàng)逐一判斷【詳解】對(duì)于A,14天中有1,3,12,13共4日空氣質(zhì)量指數(shù)為“良”,故A正確對(duì)于B,從2日到5日空氣質(zhì)量指數(shù)越來越高,故空氣質(zhì)量越來越差,故B正確對(duì)于C,14個(gè)數(shù)據(jù)中位數(shù)為:,故C錯(cuò)誤對(duì)于D,觀察折線圖可知D正確故選:C2、B【解析】根據(jù)給定數(shù)列,結(jié)合選項(xiàng)提供通項(xiàng)公式,將n代入驗(yàn)證法判斷是否為通項(xiàng)公式.【詳解】A:時(shí),排除;B:數(shù)列,,,,…滿足.C:時(shí),排除;D:時(shí),排除;故選:B3、A【解析】求出雙曲線焦點(diǎn)坐標(biāo)與漸近線方程,利用點(diǎn)到直線的距離公式可求得結(jié)果.【詳解】在雙曲線中,,,,所以,該雙曲線的左焦點(diǎn)坐標(biāo)為,漸近線方程為,即,因,該雙曲線的左焦點(diǎn)到漸近線的距離為.故選:A4、B【解析】設(shè)出雙曲線方程,把雙曲線上的點(diǎn)的坐標(biāo)表示出來并代入到方程中,找到的關(guān)系即可求解.【詳解】以O(shè)為原點(diǎn),AD所在直線為x軸建系,不妨設(shè),則該雙曲線過點(diǎn)且,將點(diǎn)代入方程,故離心率為,故選:B【點(diǎn)睛】本題考查已知點(diǎn)在雙曲線上求雙曲線離心率的方法,屬于基礎(chǔ)題目5、A【解析】根據(jù)小矩形的面積之和,算出位于10~30的2組數(shù)的頻率之和為0.33,從而得到位于30~50的數(shù)據(jù)的頻率之和為1-0.33=0.67,再由頻率計(jì)算公式即可算出樣本容量的值.【詳解】位于10~20、20~30的小矩形的面積分別為位于10~20、20~30的據(jù)的頻率分別為0.1、0.23可得位于10~30的前3組數(shù)的頻率之和為0.1+0.23=0.33由此可得位于30~50數(shù)據(jù)的頻率之和為1-0.33=0.67∵支出在[30,50)的同學(xué)有67人,即位于30~50的頻數(shù)為67,∴根據(jù)頻率計(jì)算公式,可得解之得.故選:A6、C【解析】設(shè)甲、乙、丙、丁、戊、己、庚所分錢數(shù)分別為,,,,,,,再根據(jù)題意列方程組可解得結(jié)果.【詳解】依題意,設(shè)甲、乙、丙、丁、戊、己、庚所分錢數(shù)分別為,,,,,,,則,解得,所以戊分得(文),己分得(文),故選:C.7、B【解析】根據(jù)雙曲線漸近線方程可確定a,b的關(guān)系,進(jìn)而求得離心率.【詳解】因?yàn)殡p曲線近線方程為,故雙曲線為等軸雙曲線,則a=b,故離心率為,則,故選:B.8、C【解析】利用雙曲線的定義、幾何性質(zhì)以及題意對(duì)選項(xiàng)逐個(gè)分析判斷即可【詳解】對(duì)于①,設(shè)內(nèi)切圓與的切點(diǎn)分別為,則由切線長(zhǎng)定理可得,因?yàn)椋?,所以,所以點(diǎn)的坐標(biāo)為,所以點(diǎn)的橫坐標(biāo)為定值a,所以①正確,對(duì)于②,因?yàn)?,所以,化?jiǎn)得,即,解得,因?yàn)?,所以,所以②正確,對(duì)于③,設(shè)的內(nèi)切圓半徑為,由雙曲線的定義可得,,因?yàn)?,,所以,所以,所以③正確,對(duì)于④,當(dāng)軸時(shí),可得,此時(shí),所以,所以④錯(cuò)誤,故選:C9、D【解析】分截距為零和不為零兩種情況討論即可﹒【詳解】當(dāng)直線過原點(diǎn)時(shí),滿足題意,方程為,即2x-y=0;當(dāng)直線不過原點(diǎn)時(shí),設(shè)方程為,∵直線過(1,2),∴,∴,∴方程為,故選:D﹒10、B【解析】根據(jù)拋物線的定義,求得p的值,即可得拋物線,的標(biāo)準(zhǔn)方程,求得拋物線的焦點(diǎn)坐標(biāo)后,再根據(jù)斜率公式求解.【詳解】因?yàn)?,所以,解得,所以直線的斜率為.故選B.【點(diǎn)睛】本題考查了拋物線的定義的應(yīng)用,考查了拋物線的簡(jiǎn)單性質(zhì),涉及了直線的斜率公式;拋物線上的點(diǎn)到焦點(diǎn)的距離等于其到準(zhǔn)線的距離;解題過程中注意焦點(diǎn)的位置.11、D【解析】根據(jù)斜率與傾斜角的關(guān)系求解即可.【詳解】由題的斜率,故傾斜角的正切值為,又,故.故選:D.12、B【解析】建立空間直角坐標(biāo)系,求得平面BB1C1C的法向量和直線MN的方向向量,利用兩向量垂直,得到線面平行.【詳解】建立如圖所示的空間直角坐標(biāo)系,由圖可知平面BB1C1C的法向量.∵A1M=AN=,∴M,N,∴.∵,∴MN∥平面BB1C1C,故選:B.【點(diǎn)睛】該題考查的是有關(guān)立體幾何的問題,涉及到的知識(shí)點(diǎn)有利于空間向量判斷線面平行,屬于簡(jiǎn)單題目.二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】分析可知,結(jié)合空間向量數(shù)量積的坐標(biāo)運(yùn)算可求得結(jié)果.【詳解】由已知可得,,因?yàn)?,則,即,解得.故答案為:.14、【解析】利用導(dǎo)數(shù)求得為增函數(shù),根據(jù),求得,進(jìn)而求得,得出即在點(diǎn)處的切線的斜率,再利用直線的點(diǎn)斜式方程,即可求解【詳解】由題意,點(diǎn)在曲線上,可得,又由函數(shù),則,所以函數(shù)在上為增函數(shù),且,所以,因?yàn)椋?,即在點(diǎn)處的切線的斜率為2,所以曲線在點(diǎn)的切線方程為,即.故答案為:【點(diǎn)睛】本題主要考查了利用導(dǎo)數(shù)求解曲線在某點(diǎn)處的切線方程,其中解答中熟記導(dǎo)數(shù)的幾何意義,以及導(dǎo)數(shù)的運(yùn)算公式,結(jié)合直線的點(diǎn)斜式方程是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力15、3600【解析】先設(shè)分割大房間為間,小房間為間,收益為元,列出約束條件,再根據(jù)約束條件畫出可行域,設(shè),再利用的幾何意義求最值,只需求出直線過可行域內(nèi)的整數(shù)點(diǎn)時(shí),從而得到值即可【詳解】解:設(shè)裝修大房間間,小房間間,收益為萬元,則,目標(biāo)函數(shù),由,解得畫出可行域,得到目標(biāo)函數(shù)過點(diǎn)時(shí),有最大值,故應(yīng)隔出大房間3間和小房間8間,每天能獲得最大的房租收益最大,且為3600元故答案為:360016、(1)在單調(diào)遞增,單調(diào)遞減;(2)詳見解析.【解析】(1)求得,利用和即可求得函數(shù)的單調(diào)性區(qū)間;(2)求得函數(shù)的解析式,求,對(duì)的情況進(jìn)行分類討論得到函數(shù)有極大值的情形,再結(jié)合極大值點(diǎn)的定義進(jìn)行替換、即可求解.【詳解】(1)由題意,函數(shù),則,當(dāng)時(shí),令,所以函數(shù)單調(diào)遞增;當(dāng)時(shí),令,即,解得或,令,即,解得,所以函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間中單調(diào)遞減,當(dāng)時(shí),令,即,解得或,令,即,解得,所以函數(shù)在單調(diào)遞增,在單調(diào)遞減.(2)由函數(shù),則,令,可得令,解得,當(dāng)時(shí).,函數(shù)在單調(diào)遞增,此時(shí),所以,函數(shù)在上單調(diào)遞增,此時(shí)不存在極大值,當(dāng)時(shí),令解得,令,解得,所以上單調(diào)遞減,在上單調(diào)遞增,因?yàn)樵谏洗嬖跇O大值,所以,解得,因?yàn)椋鬃C明,存在時(shí),,存在使得,當(dāng)在區(qū)間上單調(diào)遞增,在區(qū)間單調(diào)遞減,所以當(dāng)時(shí),函數(shù)取得極大值,即,,由,所以【點(diǎn)睛】本題主要考查導(dǎo)數(shù)在函數(shù)中的綜合應(yīng)用,以及不等式的證明,著重考查了轉(zhuǎn)化與化歸思想、分類討論、及邏輯推理能力與計(jì)算能力,對(duì)于此類問題,通常要構(gòu)造新函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求出最值,進(jìn)而得出相應(yīng)的含參不等式,從而求出參數(shù)的取值范圍;也可分離變量,構(gòu)造新函數(shù),直接把問題轉(zhuǎn)化為函數(shù)的最值問題三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)點(diǎn)為線段上靠近點(diǎn)的三等分點(diǎn)【解析】(1)建立空間直角坐標(biāo)系,分別寫出點(diǎn)的坐標(biāo),求出兩個(gè)平面的法向量代入公式求解即可;(2)假設(shè)存在,設(shè),利用相等向量求出坐標(biāo),利用線面平行的向量法代入公式計(jì)算即可.【小問1詳解】如下圖所示,以為原點(diǎn),,,所在直線分別為軸,軸,軸建立空間直角坐標(biāo)系,則,,,,,,.所以,設(shè)平面的法向量,所以,即,令,則,,所以,連接,因?yàn)?,,,平面,平面,平面,所以平面,所以為平面的一個(gè)法向量,所以,由圖知,二面角為銳二面角,所以二面角的大小為【小問2詳解】假設(shè)在線段上存在點(diǎn),使得平面,設(shè),,,因?yàn)槠矫?,所以,即所以,即解得所以在線段上存在點(diǎn),使得平面,此時(shí)點(diǎn)為線段上靠近點(diǎn)的三等分點(diǎn)18、(1)平面AEC,理由見解析(2)證明見解析【解析】(1)以線面平行的判定定理去證明直線與平面平行即可;(2)以線面垂直的判定定理去證明直線面即可.【小問1詳解】連接BD,設(shè),連接OE.在中,O、E分別是BD、的中點(diǎn),則.因?yàn)橹本€OE在平面AEC上,而直線不在平面AEC上,根據(jù)直線與平面平行的判定定理,得到直線平面AEC.【小問2詳解】正方體中,故,又,故同理故,又,故又根據(jù)直線與平面垂直的判定定理,得直線平面.19、(1),;(2).【解析】(1)利用求出數(shù)列的通項(xiàng),再求出等比數(shù)列的公比即得解;(2)求出,再利用錯(cuò)位相減法求解.【小問1詳解】解:,.當(dāng)時(shí),,適合..設(shè)等比數(shù)列公比為,,,即,或(舍去),.【小問2詳解】解:,,,上述兩式相減,得,所以所以.20、(1)(2)【解析】(1)首先建立直角坐標(biāo)系,求出拋物線的方程,利用,求出點(diǎn)的坐標(biāo),表示出的面積為即可;(2)利用導(dǎo)數(shù)求函數(shù)的最值即可.【小問1詳解】以為原點(diǎn),所在直線為軸,垂直于的直線為軸建立直角坐標(biāo)系,則,設(shè)拋物線的方程為,將點(diǎn)代入方程可得,解得,則拋物線方程為,由已知得,則點(diǎn)的縱坐

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論