江西省南昌市新建區(qū)第一中學(xué)2023-2024學(xué)年數(shù)學(xué)高二上期末統(tǒng)考模擬試題含解析_第1頁(yè)
江西省南昌市新建區(qū)第一中學(xué)2023-2024學(xué)年數(shù)學(xué)高二上期末統(tǒng)考模擬試題含解析_第2頁(yè)
江西省南昌市新建區(qū)第一中學(xué)2023-2024學(xué)年數(shù)學(xué)高二上期末統(tǒng)考模擬試題含解析_第3頁(yè)
江西省南昌市新建區(qū)第一中學(xué)2023-2024學(xué)年數(shù)學(xué)高二上期末統(tǒng)考模擬試題含解析_第4頁(yè)
江西省南昌市新建區(qū)第一中學(xué)2023-2024學(xué)年數(shù)學(xué)高二上期末統(tǒng)考模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩17頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

江西省南昌市新建區(qū)第一中學(xué)2023-2024學(xué)年數(shù)學(xué)高二上期末統(tǒng)考模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫(xiě)在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫(xiě)姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若直線的一個(gè)方向向量為,直線的一個(gè)方向向量為,則直線與所成的角為()A30° B.45°C.60° D.90°2.設(shè)是等比數(shù)列,則“對(duì)于任意的正整數(shù)n,都有”是“是嚴(yán)格遞增數(shù)列”()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件3.函數(shù)的定義域?yàn)殚_(kāi)區(qū)間,導(dǎo)函數(shù)在內(nèi)的圖像如圖所示,則函數(shù)在開(kāi)區(qū)間內(nèi)的極大值點(diǎn)有()A.1個(gè) B.2個(gè)C.3個(gè) D.4個(gè)4.中,三邊長(zhǎng)之比為,則為()A.銳角三角形 B.直角三角形C.鈍角三角形 D.不存在這樣的三角形5.已知實(shí)數(shù),滿足不等式組,若,則的最小值為()A. B.C. D.6.“”是“方程為雙曲線方程”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件7.如圖是拋物線形拱橋,當(dāng)水面在n時(shí),拱頂離水面2米,水面寬4米.水位下降1米后,水面寬為()A. B.C. D.8.?dāng)€(cuán)尖是我國(guó)古代建筑中屋頂?shù)囊环N結(jié)構(gòu)樣式,多見(jiàn)于亭閣或園林式建筑.下圖是一頂圓形攢尖,其屋頂可近似看作一個(gè)圓錐,其軸截面(過(guò)圓錐軸的截面)是底邊長(zhǎng)為,頂角為的等腰三角形,則該屋頂?shù)拿娣e約為()A. B.C. D.9.在中,a,b,c分別為角A,B,C的對(duì)邊,已知,,的面積為,則()A. B.C. D.10.方程表示的曲線經(jīng)過(guò)的一點(diǎn)是()A. B.C. D.11.若正實(shí)數(shù)、滿足,且不等式有解,則實(shí)數(shù)取值范圍是()A.或 B.或C. D.12.如圖,在三棱錐中,,,,點(diǎn)在平面內(nèi),且,設(shè)異面直線與所成角為,則的最大值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若圓的一條直徑的端點(diǎn)是、,則此圓的方程是_______14.若是直線外一點(diǎn),為線段的中點(diǎn),,,則______15.如圖,已知,分別是橢圓的左、右焦點(diǎn),現(xiàn)以為圓心作一個(gè)圓恰好經(jīng)過(guò)橢圓的中心并且交橢圓于點(diǎn),.若過(guò)點(diǎn)的直線是圓的切線,則橢圓的離心率為_(kāi)________16.已知拋物線C:y2=8x的焦點(diǎn)為F,直線l過(guò)點(diǎn)F與拋物線C交于A,B兩點(diǎn),以F為圓心的圓交線段AB于C,D兩點(diǎn)(從上到下依次為A,C,D,B),若,則該圓的半徑r的取值范圍是____________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)設(shè)數(shù)列的前項(xiàng)和為,,且,,(1)若(i)求;(ii)求證數(shù)列成等差數(shù)列(2)若數(shù)列為遞增數(shù)列,且,試求滿足條件的所有正整數(shù)的值18.(12分)設(shè)O為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)P在圓上,過(guò)點(diǎn)P作軸的垂線,垂足為Q且.(1)求動(dòng)點(diǎn)D的軌跡E的方程;(2)直線與圓相切,且直線與曲線E相交于兩不同的點(diǎn)A、B,T為線段AB的中點(diǎn).線段OA、OB分別與圓O交于M、N兩點(diǎn),記的面積分別為,求的取值范圍.19.(12分)設(shè)橢圓過(guò),兩點(diǎn),為坐標(biāo)原點(diǎn)(1)求橢圓的方程;(2)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓恒有兩個(gè)交點(diǎn),,且?若存在,寫(xiě)出該圓的方程,并求的取值范圍;若不存在,說(shuō)明理由20.(12分)已知數(shù)列的前項(xiàng)和,且(1)證明:數(shù)列為等差數(shù)列;(2)設(shè),記數(shù)列的前項(xiàng)和為,若,對(duì)任意恒成立,求實(shí)數(shù)的取值范圍21.(12分)已知數(shù)列的前n項(xiàng)和為,且.(1)求的通項(xiàng)公式;.(2)求數(shù)列的前n項(xiàng)和.22.(10分)已知點(diǎn)及圓,點(diǎn)P是圓B上任意一點(diǎn),線段的垂直平分線l交半徑于點(diǎn)T,當(dāng)點(diǎn)P在圓上運(yùn)動(dòng)時(shí),記點(diǎn)T的軌跡為曲線E(1)求曲線E的方程;(2)設(shè)存在斜率不為零且平行的兩條直線,,它們與曲線E分別交于點(diǎn)C、D、M、N,且四邊形是菱形,求該菱形周長(zhǎng)的最大值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】直接由公式,計(jì)算兩直線的方向向量的夾角,進(jìn)而得出直線與所成角的大小【詳解】因?yàn)?,,所以,所以,所以直線與所成角的大小為故選:C2、C【解析】根據(jù)嚴(yán)格遞增數(shù)列定義可判斷必要性,分類討論可判斷充分性.【詳解】若是嚴(yán)格遞增數(shù)列,顯然,所以“對(duì)于任意的正整數(shù)n,都有”是“是嚴(yán)格遞增數(shù)列”必要條件;對(duì)任意的正整數(shù)n都成立,所以中不可能同時(shí)含正項(xiàng)和負(fù)項(xiàng),,即,或,即,當(dāng)時(shí),有,即,是嚴(yán)格遞增數(shù)列,當(dāng)時(shí),有,即,是嚴(yán)格遞增數(shù)列,所以“對(duì)于任意的正整數(shù)n,都有”是“是嚴(yán)格遞增數(shù)列”充分條件故選:C3、B【解析】利用極值點(diǎn)的定義求解.【詳解】由導(dǎo)函數(shù)的圖象知:函數(shù)在內(nèi),與x軸有四個(gè)交點(diǎn):第一個(gè)點(diǎn)處導(dǎo)數(shù)左正右負(fù),第二個(gè)點(diǎn)處導(dǎo)數(shù)左負(fù)右正,第三個(gè)點(diǎn)處導(dǎo)數(shù)左正右正,第四個(gè)點(diǎn)處導(dǎo)數(shù)左正右負(fù),所以函數(shù)在開(kāi)區(qū)間內(nèi)的極大值點(diǎn)有2個(gè),故選:B4、C【解析】利用余弦定理可求得最大角的余弦值小于零,由此可知最大角為鈍角.【詳解】設(shè)三邊分別為,,,中的最大角為,,為鈍角,為鈍角三角形.故選:C.5、B【解析】作出不等式組對(duì)應(yīng)的平面區(qū)域,然后根據(jù)線性規(guī)劃的幾何意義求得答案.【詳解】作出不等式組所對(duì)應(yīng)的可行域如圖三角形陰影部分,平行移動(dòng)直線直線,可以看到當(dāng)移動(dòng)過(guò)點(diǎn)A時(shí),在y軸上的截距最小,聯(lián)立,解得,當(dāng)且僅當(dāng)動(dòng)直線即過(guò)點(diǎn)時(shí),取得最小值為,故選:B6、C【解析】先求出方程表示雙曲線時(shí)滿足的條件,然后根據(jù)“小推大”的原則進(jìn)行判斷即可.【詳解】因方程為雙曲線方程,所以,所以“”是“方程為雙曲線方程”的充要條件.故選:C.7、D【解析】由題建立平面直角坐標(biāo)系,設(shè)拋物線方程為,結(jié)合條件即求.【詳解】建立如圖所示的直角坐標(biāo)系:設(shè)拋物線方程為,由題意知:在拋物線上,即,解得:,,當(dāng)水位下降1米后,即將代入,即,解得:,∴水面寬為米.故選:D.8、B【解析】由軸截面三角形,根據(jù)已知可得圓錐底面半徑和母線長(zhǎng),然后可解.【詳解】軸截面如圖,其中,,所以,所以,所以圓錐的側(cè)面積.故選:B9、C【解析】利用面積公式,求出,進(jìn)而求出,利用余弦定理求出,再利用正弦定理求出【詳解】由面積公式得:,因?yàn)榈拿娣e為,所以,求得:因,所以由余弦定理得:所以由正弦定理得:,即,解得:故選:C10、C【解析】當(dāng)時(shí)可得,可得答案.【詳解】當(dāng)時(shí)可得所以方程表示的曲線經(jīng)過(guò)的一點(diǎn)是,且其它點(diǎn)都不滿足方程,故選:C11、A【解析】將代數(shù)式與相乘,展開(kāi)后利用基本不等式可求得的最小值,可得出關(guān)于實(shí)數(shù)的不等式,解之即可.【詳解】因?yàn)檎龑?shí)數(shù)、滿足,則,即,所以,,當(dāng)且僅當(dāng)時(shí),即當(dāng)時(shí),等號(hào)成立,即的最小值為,因?yàn)椴坏仁接薪?,則,即,即,解得或.故選:A.II卷12、D【解析】設(shè)線段的中點(diǎn)為,連接,過(guò)點(diǎn)在平面內(nèi)作,垂足為點(diǎn),證明出平面,然后以點(diǎn)為坐標(biāo)原點(diǎn),、、分別為、、軸的正方向建立空間直角坐標(biāo)系,設(shè),其中,且,求出的最大值,利用空間向量法可求得的最大值.【詳解】設(shè)線段的中點(diǎn)為,連接,,為的中點(diǎn),則,,則,,同理可得,,,平面,過(guò)點(diǎn)在平面內(nèi)作,垂足為點(diǎn),因?yàn)?,所以,為等邊三角形,故為的中點(diǎn),平面,平面,則,,,平面,以點(diǎn)為坐標(biāo)原點(diǎn),、、分別為、、軸的正方向建立如下圖所示的空間直角坐標(biāo)系,因?yàn)槭沁呴L(zhǎng)為的等邊三角形,為的中點(diǎn),則,則、、、,由于點(diǎn)在平面內(nèi),可設(shè),其中,且,從而,因?yàn)?,則,所以,,故當(dāng)時(shí),有最大值,即,故,即有最大值,所以,.故選:D.【點(diǎn)睛】方法點(diǎn)睛:求空間角的常用方法:(1)定義法:由異面直線所成角、線面角、二面角的定義,結(jié)合圖形,作出所求空間角,再結(jié)合題中條件,解對(duì)應(yīng)的三角形,即可求出結(jié)果;(2)向量法:建立適當(dāng)?shù)目臻g直角坐標(biāo)系,通過(guò)計(jì)算向量的夾角(兩直線的方向向量、直線的方向向量與平面的法向量、兩平面的法向量)的余弦值,即可求得結(jié)果.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先設(shè)圓上任意一點(diǎn)的坐標(biāo),然后利用直徑對(duì)應(yīng)的圓周角為直角,再利用向量垂直建立方程即可【詳解】設(shè)圓上任意一點(diǎn)的坐標(biāo)為可得:,則有:,即解得:故答案為:14、【解析】根據(jù)題意得到,進(jìn)而得到,求得的值,即可求解.【詳解】因?yàn)闉榫€段的中點(diǎn),所以,所以,又因?yàn)椋?,所以故答案為?15、##【解析】根據(jù)給定條件探求出橢圓長(zhǎng)軸長(zhǎng)與其焦距的關(guān)系即可計(jì)算作答.【詳解】設(shè)橢圓長(zhǎng)軸長(zhǎng)為,焦距為,即,依題意,,而直線是圓的切線,即,則有,又點(diǎn)在橢圓上,即,因此,,從而有,所以橢圓的離心率為.故答案為:16、【解析】設(shè)出直線的方程為,代入拋物線方程,消去,可得關(guān)于的二次方程,運(yùn)用韋達(dá)定理及拋物線的定義,化簡(jiǎn)計(jì)算可求解.【詳解】拋物線C:y2=8x的焦點(diǎn)為,設(shè)以為圓心的圓的半徑為,可知,,設(shè),直線的方程為,則,代入拋物線方程,可得,即有,,,,即,所以.故答案為:三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);詳見(jiàn)解析;(2)5.【解析】(1)由題可得,由條件可依次求各項(xiàng),即得;猜想,用數(shù)學(xué)歸納法證明即得;(2)設(shè),由題可得,進(jìn)而可得,結(jié)合條件即求.【小問(wèn)1詳解】(i)∵,且,,,∴,,,∴,,,又,,,∴,∴,解得,,解得,,解得,,解得,∴;(ii)由,,,,猜想數(shù)列是首項(xiàng),公差為的等差數(shù)列,,用數(shù)學(xué)歸納法證明:當(dāng)時(shí),,成立;假設(shè)時(shí),等式成立,即,則時(shí),,∴,∴當(dāng)時(shí),等式也成立,∴,∴數(shù)列是首項(xiàng),公差為的等差數(shù)列.【小問(wèn)2詳解】設(shè),由,,即,∴,又,,,∴,,,,,,∴,,,∴,又?jǐn)?shù)列為遞增數(shù)列,∴,解得,由,∴,解得.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:第一問(wèn)的關(guān)鍵是由條件猜想,然后數(shù)學(xué)歸納法證明,第二問(wèn)求出,,即得.18、(1);(2).【解析】(1)設(shè)出點(diǎn)D的坐標(biāo),借助向量運(yùn)算表示出點(diǎn)P的坐標(biāo)代入圓O的方程計(jì)算作答.(2)在直線的斜率存在時(shí)設(shè)出其方程,與軌跡E的方程聯(lián)立,借助韋達(dá)定理表示出,再利用二次函數(shù)性質(zhì)計(jì)算得解,然后計(jì)算直線的斜率不存在的值作答.【小問(wèn)1詳解】設(shè)點(diǎn),則,因,則有,又點(diǎn)P在圓上,即,所以動(dòng)點(diǎn)D的軌跡E的方程是.【小問(wèn)2詳解】當(dāng)直線的斜率存在時(shí),設(shè)其方程為:,因直線與圓相切,則,即,而時(shí),直線與橢圓E相切,不符合題意,因此,由消去x并整理得:,設(shè),則,而點(diǎn)T是線段AB中點(diǎn),則有:,令,則,而,當(dāng),即時(shí),,當(dāng),即時(shí),,而,于是得,當(dāng)直線的斜率不存在時(shí),直線,,此時(shí),所以的取值范圍是.【點(diǎn)睛】思路點(diǎn)睛:圓錐曲線中的最值問(wèn)題,往往需要利用韋達(dá)定理構(gòu)建目標(biāo)的函數(shù)關(guān)系式,自變量可以斜率或點(diǎn)的橫、縱坐標(biāo)等.而目標(biāo)函數(shù)的最值可以通過(guò)二次函數(shù)或基本不等式或?qū)?shù)等求得.19、(1)(2)存在,,【解析】(1)根據(jù)橢圓E:()過(guò),兩點(diǎn),直接代入方程解方程組,解方程組即可.(2)假設(shè)存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒有兩個(gè)交點(diǎn)A,B,且,當(dāng)切線斜率存在時(shí),設(shè)該圓的切線方程為,聯(lián)立,根據(jù),結(jié)合韋達(dá)定理運(yùn)算,同時(shí)滿足,則存在,否則不存在;在該圓的方程存在時(shí),利用弦長(zhǎng)公式結(jié)合韋達(dá)定理得到,結(jié)合題意求解即可,當(dāng)切線斜率不存在時(shí),驗(yàn)證即可.【小問(wèn)1詳解】將,的坐標(biāo)代入橢圓的方程得,解得,所以橢圓的方程為【小問(wèn)2詳解】假設(shè)滿足題意的圓存在,其方程為,其中,設(shè)該圓的任意一條切線和橢圓交于,兩點(diǎn),當(dāng)直線的斜率存在時(shí),令直線的方程為,①將其代入橢圓的方程并整理得,由韋達(dá)定理得,,②因?yàn)?,所以,③將①代入③并整理得,?lián)立②得,④因?yàn)橹本€和圓相切,因此,由④得,所以存在圓滿足題意當(dāng)切線的斜率不存在時(shí),易得,由橢圓方程得,顯然,綜上所述,存在圓滿足題意當(dāng)切線的斜率存在時(shí),由①②④得,由,得,即當(dāng)切線的斜率不存在時(shí),易得,所以綜上所述,存在圓心在原點(diǎn)的圓滿足題意,且20、(1)證明見(jiàn)解析(2)【解析】(1)利用可得答案;(2)利用錯(cuò)位相減可得,轉(zhuǎn)化為對(duì)任意,恒成立,求出的最大值可得答案小問(wèn)1詳解】當(dāng)時(shí),由,得或(舍去),由,得,①當(dāng)時(shí),,②由①-②,得,整理得,因?yàn)?,所以所以是首?xiàng)為1,公差為1的等差數(shù)列【小問(wèn)2詳解】由(1)可得,所以,③,④由③-④,得,即,由得,所以,即,該式對(duì)任意恒成立,因此,所以的取值范圍是21、(1);(2).【解析】(1)根據(jù)給定條件結(jié)合當(dāng)時(shí),探求數(shù)列的性質(zhì)即可計(jì)算作答.(2)由(1)求出,再利用錯(cuò)位相減法計(jì)算作答.小問(wèn)1詳解】依題意,當(dāng)時(shí),因?yàn)椋瑒t,當(dāng)時(shí),,解得,于是得數(shù)列是以1為首項(xiàng),為公比的等比數(shù)列,則,所以的通項(xiàng)公式是.【小問(wèn)2詳解】由(1)可知,,則,因此,兩式相減得:,于是得,所以數(shù)列的前n項(xiàng)和.22、(1)(2)【解析】(1)根據(jù)橢圓的定義和性質(zhì),建立方程求出,即可(2)設(shè)的方程為,,,,,設(shè)的方程為,,,,,分別聯(lián)立直線方程和橢圓方程,運(yùn)用韋達(dá)定理和判別式大于0,以及弦長(zhǎng)公式,求得,,運(yùn)用菱形和橢圓的對(duì)稱性可得,關(guān)于原點(diǎn)對(duì)稱,結(jié)合菱形的對(duì)角線垂直和向量數(shù)量積為0,可得,設(shè)菱形的周長(zhǎng)為,運(yùn)用基本不等式,計(jì)算可得所求最大值【小問(wèn)1詳解】點(diǎn)在線段的垂直平分線上,,又,曲線是以坐標(biāo)原點(diǎn)為中心,和為焦點(diǎn),長(zhǎng)軸長(zhǎng)為的橢圓設(shè)曲線的方程為,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論