云南省通??h三中2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末監(jiān)測(cè)模擬試題含解析_第1頁(yè)
云南省通海縣三中2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末監(jiān)測(cè)模擬試題含解析_第2頁(yè)
云南省通??h三中2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末監(jiān)測(cè)模擬試題含解析_第3頁(yè)
云南省通??h三中2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末監(jiān)測(cè)模擬試題含解析_第4頁(yè)
云南省通??h三中2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末監(jiān)測(cè)模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩10頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

云南省通??h三中2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末監(jiān)測(cè)模擬試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若,則的虛部為()A. B.C. D.2.圓與圓的位置關(guān)系是()A.內(nèi)含 B.相交C.外切 D.外離3.已知,,則在上的投影向量為()A.1 B.C. D.4.設(shè)等差數(shù)列,的前n項(xiàng)和分別是,若,則()A. B.C. D.5.已知數(shù)列{an}的前n項(xiàng)和為Sn,滿足a1=1,-=1,則an=()A.2n-1 B.nC.2n-1 D.2n-16.下列命題中正確的個(gè)數(shù)為()①若向量,與空間任意向量都不能構(gòu)成基底,則;②若向量,,是空間一組基底,則,,也是空間的一組基底;③為空間一組基底,若,則;④對(duì)于任意非零空間向量,,若,則A.1 B.2C.3 D.47.已知是兩條不同的直線,是兩個(gè)不同的平面,且,,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分又不必要條件8.已知橢圓的一個(gè)焦點(diǎn)坐標(biāo)為,則的值為()A.1 B.3C.9 D.819.與直線平行,且經(jīng)過點(diǎn)(2,3)的直線的方程為()A. B.C. D.10.已知橢圓的兩個(gè)焦點(diǎn)分別為,若橢圓上不存在點(diǎn),使得是鈍角,則橢圓離心率的取值范圍是()A. B.C. D.11.若1,m,9三個(gè)數(shù)成等比數(shù)列,則圓錐曲線的離心率是()A.或 B.或2C.或 D.或212.設(shè)橢圓()的左焦點(diǎn)為F,O為坐標(biāo)原點(diǎn).過點(diǎn)F且斜率為的直線與C的一個(gè)交點(diǎn)為Q(點(diǎn)Q在x軸上方),且,則C的離心率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若橢圓和圓(c為橢圓的半焦距)有四個(gè)不同的交點(diǎn),則橢圓的離心率的取值范圍是_____.14.已知直線與圓相切,則__________.15.已知直線和直線垂直,則實(shí)數(shù)___________.16.設(shè),若不等式在上恒成立,則的取值范圍是______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列滿足且.(1)證明數(shù)列是等比數(shù)列;(2)設(shè)數(shù)列滿足,,求數(shù)列的通項(xiàng)公式.18.(12分)如圖,在直三棱柱中,,,,點(diǎn)是的中點(diǎn).(1)求證:;(2)求證:平面.19.(12分)如圖,已知在四棱錐中,平面,四邊形為直角梯形,,,.(1)求直線與平面所成角的正弦值;(2)在線段上是否存在點(diǎn),使得二面角的余弦值?若存在,指出點(diǎn)的位置;若不存在,說明理由.20.(12分)已知圓C:x2+y2+2ax﹣3=0,且圓C上存在兩點(diǎn)關(guān)于直線3x﹣2y﹣3=0對(duì)稱.(1)求圓C的半徑r;(2)若直線l過點(diǎn)A(2,),且與圓C交于MN,兩點(diǎn),|MN|=2,求直線l的方程.21.(12分)已知數(shù)列通項(xiàng)公式為:,其中.記為數(shù)列的前項(xiàng)和(1)求,;(2)數(shù)列的通項(xiàng)公式為,求的前項(xiàng)和22.(10分)已知在時(shí)有極值0.(1)求常數(shù),的值;(2)求在區(qū)間上的最值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】根據(jù)復(fù)數(shù)的運(yùn)算化簡(jiǎn),由復(fù)數(shù)概念即可求解.【詳解】因?yàn)?,所以的虛部為,故選:A2、C【解析】分別求出兩圓的圓心、半徑,再求出兩圓的圓心距即可判斷作答.【詳解】圓的圓心,半徑,圓,即的圓心,半徑,則,即有,所以圓與圓外切.故選:C3、C【解析】根據(jù)題意得,進(jìn)而根據(jù)投影向量的概念求解即可.【詳解】解:因?yàn)?,,所以,所以,所以在上的投影向量為故選:C4、C【解析】結(jié)合等差數(shù)列前項(xiàng)和公式求得正確答案.【詳解】依題意等差數(shù)列,的前n項(xiàng)和分別是,由于,故可設(shè),,當(dāng)時(shí),,,所以,所以.故選:C5、A【解析】由題可得,利用與的關(guān)系即求.【詳解】∵a1=1,-=1,∴是以1為首項(xiàng),以1為公差的等差數(shù)列,∴,即,∴當(dāng)時(shí),,當(dāng)時(shí),也適合上式,所以故選:A.6、C【解析】根據(jù)題意、空間向量基底的概念和共線的運(yùn)算即可判斷命題①②③,根據(jù)空間向量的平行關(guān)系即可判斷命題④.【詳解】①:向量與空間任意向量都不能構(gòu)成一個(gè)基底,則與共線或與其中有一個(gè)為零向量,所以,故①正確;②:由向量是空間一組基底,則空間中任意一個(gè)向量,存在唯一的實(shí)數(shù)組使得,所以也是空間一組基底,故②正確;③:由為空間一組基底,若,則,所以,故③正確;④:對(duì)于任意非零空間向量,,若,則存在一個(gè)實(shí)數(shù)使得,有,又中可以有為0的,分式?jīng)]有意義,故④錯(cuò)誤.故選:C7、B【解析】根據(jù)垂直關(guān)系的性質(zhì)可判斷.【詳解】由題,,則或,若,則或或與相交,故充分性不成立;若,則必有,故必要性成立,所以“”是“”的必要不充分條件.故選:B.8、A【解析】根據(jù)條件,利用橢圓標(biāo)準(zhǔn)方程中長(zhǎng)半軸長(zhǎng)a,短半軸長(zhǎng)b,半焦距c關(guān)系列式計(jì)算即得.【詳解】由橢圓的一個(gè)焦點(diǎn)坐標(biāo)為,則半焦距c=2,于是得,解得,所以值為1.故選:A9、C【解析】由直線平行及直線所過的點(diǎn),應(yīng)用點(diǎn)斜式寫出直線方程即可.【詳解】與直線平行,且經(jīng)過點(diǎn)(2,3)的直線的方程為,整理得故選:C10、C【解析】點(diǎn)P取端軸的一個(gè)端點(diǎn)時(shí),使得∠F1PF2是最大角.已知橢圓上不存在點(diǎn)P,使得∠F1PF2是鈍角,可得b≥c,利用離心率計(jì)算公式即可得出【詳解】∵點(diǎn)P取端軸的一個(gè)端點(diǎn)時(shí),使得∠F1PF2是最大角已知橢圓上不存在點(diǎn)P,使得∠F1PF2是鈍角,∴b≥c,可得a2﹣c2≥c2,可得:a∴故選C【點(diǎn)睛】本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.求橢圓的離心率(或離心率的取值范圍),常見有兩種方法:①求出,代入公式;②只需要根據(jù)一個(gè)條件得到關(guān)于的齊次式,結(jié)合轉(zhuǎn)化為的齊次式,然后等式(不等式)兩邊分別除以或轉(zhuǎn)化為關(guān)于的方程(不等式),解方程(不等式)即可得(的取值范圍).11、D【解析】運(yùn)用等比數(shù)列的性質(zhì)可得,再討論,,求出曲線的,,由離心率公式計(jì)算即可得到【詳解】三個(gè)數(shù)1,,9成等比數(shù)列,則,解得,,當(dāng)時(shí),曲線為橢圓,則;當(dāng)時(shí),曲線為為雙曲線,則離心率故選:12、D【解析】連接Q和右焦點(diǎn),可知|OQ|=,可得∠FQ=90°,由得,寫出兩直線方程,聯(lián)立可得Q點(diǎn)坐標(biāo),Q點(diǎn)坐標(biāo)代入橢圓標(biāo)準(zhǔn)方程可得a、b、c關(guān)系﹒【詳解】設(shè)橢圓右焦點(diǎn)為,連接Q,∵,,∴|OQ|=,∴∠FQ=90°,∵,∴,F(xiàn)Q過F(-c,0),Q過(c,0),則,由,∵Q在橢圓上,∴,又,解得,∴離心率故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】當(dāng)圓的直徑介于橢圓長(zhǎng)軸和短軸長(zhǎng)度范圍之間時(shí),橢圓和圓有四個(gè)不同的焦點(diǎn),由此列不等式,解不等式求得橢圓離心率的取值范圍.【詳解】由于橢圓和圓有四個(gè)焦點(diǎn),故圓的直徑介于橢圓長(zhǎng)軸和短軸長(zhǎng)度范圍之間,即.由得,兩邊平方并化簡(jiǎn)得,即①.由得,兩邊平方并化簡(jiǎn)得,解得②.由①②得.故填.【點(diǎn)睛】本小題主要考查橢圓和圓的位置關(guān)系,考查橢圓離心率取值范圍的求法,屬于中檔題.14、【解析】由直線與圓相切,結(jié)合點(diǎn)到直線的距離公式求解即可.【詳解】由直線與圓相切,所以圓心到直線l的距離等于半徑r,即.故答案為:15、【解析】根據(jù)兩條直線相互垂直的條件列方程,解方程求得m的值.【詳解】由于兩條直線垂直,故,解得.故答案為:.16、【解析】構(gòu)造,利用導(dǎo)數(shù)求其最大值,結(jié)合已知不等式恒成立,即可確定的范圍.【詳解】令,則且,若得:;若得:;所以在上遞增,在上遞減,故,要使在上恒成立,即.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】(1)根據(jù)題意可得,根據(jù)等比數(shù)列的定義,即可得證;(2)由(1)可得,可得,利用累加法即可求得數(shù)列的通項(xiàng)公式.【詳解】(1)因?yàn)?,所以,即,所以是首?xiàng)為1公比為3的等比數(shù)列(2)由(1)可知,所以因?yàn)椋浴?,,各式相加得:,又,所以,又?dāng)n=1時(shí),滿足上式,所以18、(1)證明見解析;(2)證明見解析.【解析】(1)由直棱柱的性質(zhì)可得,由勾股定理可得,由線面垂直判定定理即可得結(jié)果;(2)取的中點(diǎn),連結(jié)和,通過線線平行得到面面,進(jìn)而得結(jié)果.【詳解】(1)∵直三棱柱,∴面,∴,又∵,,,∴,∴,∵,∴面,∴(2)取的中點(diǎn),連結(jié)和,∵,且,∴四邊形為平行四邊形,∴,面,∴面,∵,且,∴四邊形平行四邊形,∴,面,∴面,∵,∴面面,∴平面.【點(diǎn)睛】方法點(diǎn)睛:線面平行常見的證明方法:(1)通過構(gòu)造相似三角形(三角形中位線),得到線線平行;(2)通過構(gòu)造平行四邊形得到線線平行;(3)通過線面平行得到面面平行,再得線面平行.19、(1);(2)存在,為上靠近點(diǎn)的三等分點(diǎn)【解析】(1)分別以所在的直線為軸,建立如圖所示的空間直角坐標(biāo)系,求出的坐標(biāo)以及平面的一個(gè)法向量,計(jì)算即可求解;(2)假設(shè)線段上存在點(diǎn)符合題意,設(shè)可得,求出平面的法向量和平面的法向量,利用即可求出的值,即可求解.【詳解】(1)分別以所在的直線為軸,建立如圖所示的空間直角坐標(biāo)系,如圖所示:則,,,.不妨設(shè)平面的一個(gè)法向量,則有,即,取.設(shè)直線與平面所成的角為,則,所以直線與平面所成角的正弦值為;(2)假設(shè)線段上存在點(diǎn),使得二面角的余弦值.設(shè),則,從而,,.設(shè)平面的法向量,則有,即,取.設(shè)平面的法向量,則有,即,取.,解得:或(舍),故存在點(diǎn)滿足條件,為上靠近點(diǎn)的三等分點(diǎn)【點(diǎn)睛】求空間角的常用方法:(1)定義法,由異面直線所成角、線面角、二面角的定義,結(jié)合圖形,作出所求空間角,再結(jié)合題中條件,解對(duì)應(yīng)三角形,即可求出結(jié)果;(2)向量法:建立適當(dāng)?shù)目臻g直角坐標(biāo)系,通過計(jì)算向量夾角(直線方向向量與直線方向向量、直線方向向量與平面法向量,平面法向量與平面法向量)余弦值,即可求出結(jié)果.20、(1)r=2(2)x﹣2=0或x+﹣3=0【解析】(1)由已知根據(jù)對(duì)稱性可知直線m過圓心C.代入后可求a,進(jìn)而可求半徑;(2)先求出圓心到直線l的距離,然后結(jié)合直線與圓相交的弦長(zhǎng)公式可求.【小問1詳解】解:圓C的標(biāo)準(zhǔn)方程為,圓心為.因?yàn)閳AC關(guān)于直線m對(duì)稱,所以直線m過圓心C.將代入,解得.此時(shí)圓C的標(biāo)準(zhǔn)方程為,半徑r=2.【小問2詳解】解:設(shè)圓心到直線距離為d,則d===1,①當(dāng)直線l斜率不存在時(shí),直線方程l為x=2,符合條件.②當(dāng)直線l斜率存在時(shí),設(shè)直線l方程為y﹣=k(x﹣2),即x﹣y﹣2k+=0,所以圓心C到直線l的距離d==1,解得,k=﹣,直線l的方程為x+﹣3=0,綜上所述,直線l的方程為x﹣2=0或x+﹣3=0.21、(1);;(2).【解析】(1)驗(yàn)證可知數(shù)列是以為周期的周期數(shù)列,則,;(2)由(1)可求得,利用錯(cuò)位相減法可求得結(jié)果.【小問1詳解】當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),;數(shù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論