上海西南位育中學(xué)七年級(jí)下冊(cè)數(shù)學(xué)期末試卷試卷(word版含答案)_第1頁(yè)
上海西南位育中學(xué)七年級(jí)下冊(cè)數(shù)學(xué)期末試卷試卷(word版含答案)_第2頁(yè)
上海西南位育中學(xué)七年級(jí)下冊(cè)數(shù)學(xué)期末試卷試卷(word版含答案)_第3頁(yè)
上海西南位育中學(xué)七年級(jí)下冊(cè)數(shù)學(xué)期末試卷試卷(word版含答案)_第4頁(yè)
上海西南位育中學(xué)七年級(jí)下冊(cè)數(shù)學(xué)期末試卷試卷(word版含答案)_第5頁(yè)
已閱讀5頁(yè),還剩30頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

上海西南位育中學(xué)七年級(jí)下冊(cè)數(shù)學(xué)期末試卷試卷(word版含答案)一、解答題1.如圖,,點(diǎn)A、B分別在直線MN、GH上,點(diǎn)O在直線MN、GH之間,若,.(1)=;(2)如圖2,點(diǎn)C、D是、角平分線上的兩點(diǎn),且,求的度數(shù);(3)如圖3,點(diǎn)F是平面上的一點(diǎn),連結(jié)FA、FB,E是射線FA上的一點(diǎn),若,,且,求n的值.2.已知點(diǎn)C在射線OA上.(1)如圖①,CDOE,若∠AOB=90°,∠OCD=120°,求∠BOE的度數(shù);(2)在①中,將射線OE沿射線OB平移得O′E'(如圖②),若∠AOB=α,探究∠OCD與∠BO′E′的關(guān)系(用含α的代數(shù)式表示)(3)在②中,過(guò)點(diǎn)O′作OB的垂線,與∠OCD的平分線交于點(diǎn)P(如圖③),若∠CPO′=90°,探究∠AOB與∠BO′E′的關(guān)系.3.已知,定點(diǎn),分別在直線,上,在平行線,之間有一動(dòng)點(diǎn).(1)如圖1所示時(shí),試問(wèn),,滿足怎樣的數(shù)量關(guān)系?并說(shuō)明理由.(2)除了(1)的結(jié)論外,試問(wèn),,還可能滿足怎樣的數(shù)量關(guān)系?請(qǐng)畫(huà)圖并證明(3)當(dāng)滿足,且,分別平分和,①若,則__________°.②猜想與的數(shù)量關(guān)系.(直接寫(xiě)出結(jié)論)4.已知,AB∥CD.點(diǎn)M在AB上,點(diǎn)N在CD上.(1)如圖1中,∠BME、∠E、∠END的數(shù)量關(guān)系為:;(不需要證明)如圖2中,∠BMF、∠F、∠FND的數(shù)量關(guān)系為:;(不需要證明)(2)如圖3中,NE平分∠FND,MB平分∠FME,且2∠E+∠F=180°,求∠FME的度數(shù);(3)如圖4中,∠BME=60°,EF平分∠MEN,NP平分∠END,且EQ∥NP,則∠FEQ的大小是否發(fā)生變化,若變化,請(qǐng)說(shuō)明理由,若不變化,求出∠FEQ的度數(shù).5.已知AB∥CD,∠ABE與∠CDE的角分線相交于點(diǎn)F.(1)如圖1,若BM、DM分別是∠ABF和∠CDF的角平分線,且∠BED=100°,求∠M的度數(shù);(2)如圖2,若∠ABM=∠ABF,∠CDM=∠CDF,∠BED=α°,求∠M的度數(shù);(3)若∠ABM=∠ABF,∠CDM=∠CDF,請(qǐng)直接寫(xiě)出∠M與∠BED之間的數(shù)量關(guān)系二、解答題6.為更好地理清平行線相關(guān)角的關(guān)系,小明爸爸為他準(zhǔn)備了四根細(xì)直木條、、、,做成折線,如圖1,且在折點(diǎn)B、C、D處均可自由轉(zhuǎn)出.(1)如圖2,小明將折線調(diào)節(jié)成,,,判斷是否平行于,并說(shuō)明理由;(2)如圖3,若,調(diào)整線段、使得求出此時(shí)的度數(shù),要求畫(huà)出圖形,并寫(xiě)出計(jì)算過(guò)程.(3)若,,,請(qǐng)直接寫(xiě)出此時(shí)的度數(shù).7.將兩塊三角板按如圖置,其中三角板邊,,,.(1)下列結(jié)論:正確的是_______.①如果,則有;②;③如果,則平分.(2)如果,判斷與是否相等,請(qǐng)說(shuō)明理由.(3)將三角板繞點(diǎn)順時(shí)針轉(zhuǎn)動(dòng),直到邊與重合即停止,轉(zhuǎn)動(dòng)的過(guò)程中當(dāng)兩塊三角板恰有兩邊平行時(shí),請(qǐng)直接寫(xiě)出所有可能的度數(shù).8.如圖,,平分,設(shè)為,點(diǎn)E是射線上的一個(gè)動(dòng)點(diǎn).(1)若時(shí),且,求的度數(shù);(2)若點(diǎn)E運(yùn)動(dòng)到上方,且滿足,,求的值;(3)若,求的度數(shù)(用含n和的代數(shù)式表示).9.已知兩條直線l1,l2,l1∥l2,點(diǎn)A,B在直線l1上,點(diǎn)A在點(diǎn)B的左邊,點(diǎn)C,D在直線l2上,且滿足.(1)如圖①,求證:AD∥BC;(2)點(diǎn)M,N在線段CD上,點(diǎn)M在點(diǎn)N的左邊且滿足,且AN平分∠CAD;(Ⅰ)如圖②,當(dāng)時(shí),求∠DAM的度數(shù);(Ⅱ)如圖③,當(dāng)時(shí),求∠ACD的度數(shù).10.已知,直角的邊與直線a分別相交于O、G兩點(diǎn),與直線b分別交于E、F點(diǎn),.(1)將直角如圖1位置擺放,如果,則______;(2)將直角如圖2位置擺放,N為AC上一點(diǎn),,請(qǐng)寫(xiě)出與之間的等量關(guān)系,并說(shuō)明理由.(3)將直角如圖3位置擺放,若,延長(zhǎng)AC交直線b于點(diǎn)Q,點(diǎn)P是射線GF上一動(dòng)點(diǎn),探究,與的數(shù)量關(guān)系,請(qǐng)直接寫(xiě)出結(jié)論.三、解答題11.如圖,直線,、是、上的兩點(diǎn),直線與、分別交于點(diǎn)、,點(diǎn)是直線上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)、重合),連接、.(1)當(dāng)點(diǎn)與點(diǎn)、在一直線上時(shí),,,則_____.(2)若點(diǎn)與點(diǎn)、不在一直線上,試探索、、之間的關(guān)系,并證明你的結(jié)論.12.(1)如圖1,∠BAD的平分線AE與∠BCD的平分線CE交于點(diǎn)E,AB∥CD,∠ADC=50°,∠ABC=40°,求∠AEC的度數(shù);(2)如圖2,∠BAD的平分線AE與∠BCD的平分線CE交于點(diǎn)E,∠ADC=α°,∠ABC=β°,求∠AEC的度數(shù);(3)如圖3,PQ⊥MN于點(diǎn)O,點(diǎn)A是平面內(nèi)一點(diǎn),AB、AC交MN于B、C兩點(diǎn),AD平分∠BAC交PQ于點(diǎn)D,請(qǐng)問(wèn)的值是否發(fā)生變化?若不變,求出其值;若改變,請(qǐng)說(shuō)明理由.13.模型與應(yīng)用.(模型)(1)如圖①,已知AB∥CD,求證∠1+∠MEN+∠2=360°.(應(yīng)用)(2)如圖②,已知AB∥CD,則∠1+∠2+∠3+∠4+∠5+∠6的度數(shù)為.如圖③,已知AB∥CD,則∠1+∠2+∠3+∠4+∠5+∠6+…+∠n的度數(shù)為.(3)如圖④,已知AB∥CD,∠AM1M2的角平分線M1O與∠CMnMn-1的角平分線MnO交于點(diǎn)O,若∠M1OMn=m°.在(2)的基礎(chǔ)上,求∠2+∠3+∠4+∠5+∠6+……+∠n-1的度數(shù).(用含m、n的代數(shù)式表示)14.如果三角形的兩個(gè)內(nèi)角與滿足,那么我們稱這樣的三角形是“準(zhǔn)互余三角形”.(1)如圖1,在中,,是的角平分線,求證:是“準(zhǔn)互余三角形”;(2)關(guān)于“準(zhǔn)互余三角形”,有下列說(shuō)法:①在中,若,,,則是“準(zhǔn)互余三角形”;②若是“準(zhǔn)互余三角形”,,,則;③“準(zhǔn)互余三角形”一定是鈍角三角形.其中正確的結(jié)論是___________(填寫(xiě)所有正確說(shuō)法的序號(hào));(3)如圖2,,為直線上兩點(diǎn),點(diǎn)在直線外,且.若是直線上一點(diǎn),且是“準(zhǔn)互余三角形”,請(qǐng)直接寫(xiě)出的度數(shù).15.如圖,,點(diǎn)A、B分別在直線MN、GH上,點(diǎn)O在直線MN、GH之間,若,.(1)=;(2)如圖2,點(diǎn)C、D是、角平分線上的兩點(diǎn),且,求的度數(shù);(3)如圖3,點(diǎn)F是平面上的一點(diǎn),連結(jié)FA、FB,E是射線FA上的一點(diǎn),若,,且,求n的值.【參考答案】一、解答題1.(1)100;(2)75°;(3)n=3.【分析】(1)如圖:過(guò)O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OB解析:(1)100;(2)75°;(3)n=3.【分析】(1)如圖:過(guò)O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OBH=360°,即可求出∠AOB;(2)如圖:分別延長(zhǎng)AC、CD交GH于點(diǎn)E、F,先根據(jù)角平分線求得,再根據(jù)平行線的性質(zhì)得到;進(jìn)一步求得,,然后根據(jù)三角形外角的性質(zhì)解答即可;(3)設(shè)BF交MN于K,由∠NAO=116°,得∠MAO=64°,故∠MAE=,同理∠OBH=144°,∠HBF=n∠OBF,得∠FBH=,從而,又∠FKN=∠F+∠FAK,得,即可求n.【詳解】解:(1)如圖:過(guò)O作OP//MN,∵M(jìn)N//GHl∴MN//OP//GH∴∠NAO+∠POA=180°,∠POB+∠OBH=180°∴∠NAO+∠AOB+∠OBH=360°∵∠NAO=116°,∠OBH=144°∴∠AOB=360°-116°-144°=100°;(2)分別延長(zhǎng)AC、CD交GH于點(diǎn)E、F,∵AC平分且,∴,又∵M(jìn)N//GH,∴;∵,∵BD平分,∴,又∵∴;∴;(3)設(shè)FB交MN于K,∵,則;∴∵,∴,,在△FAK中,,∴,∴.經(jīng)檢驗(yàn):是原方程的根,且符合題意.【點(diǎn)睛】本題主要考查平行線的性質(zhì)及應(yīng)用,正確作出輔助線、構(gòu)造平行線、再利用平行線性質(zhì)進(jìn)行求解是解答本題的關(guān)鍵.2.(1)150°;(2)∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′【分析】(1)先根據(jù)平行線的性質(zhì)得到∠AOE的度數(shù),再根據(jù)直角、周角的定義即可求得∠BOE的度數(shù);(2)解析:(1)150°;(2)∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′【分析】(1)先根據(jù)平行線的性質(zhì)得到∠AOE的度數(shù),再根據(jù)直角、周角的定義即可求得∠BOE的度數(shù);(2)如圖②,過(guò)O點(diǎn)作OF∥CD,根據(jù)平行線的判定和性質(zhì)可得∠OCD、∠BO′E′的數(shù)量關(guān)系;(3)由已知推出CP∥OB,得到∠AOB+∠PCO=180°,結(jié)合角平分線的定義可推出∠OCD=2∠PCO=360°-2∠AOB,根據(jù)(2)∠OCD+∠BO′E′=360°-∠AOB,進(jìn)而推出∠AOB=∠BO′E′.【詳解】解:(1)∵CD∥OE,∴∠AOE=∠OCD=120°,∴∠BOE=360°-∠AOE-∠AOB=360°-90°-120°=150°;(2)∠OCD+∠BO′E′=360°-α.證明:如圖②,過(guò)O點(diǎn)作OF∥CD,∵CD∥O′E′,∴OF∥O′E′,∴∠AOF=180°-∠OCD,∠BOF=∠E′O′O=180°-∠BO′E′,∴∠AOB=∠AOF+∠BOF=180°-∠OCD+180°-∠BO′E′=360°-(∠OCD+∠BO′E′)=α,∴∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′.證明:∵∠CPO′=90°,∴PO′⊥CP,∵PO′⊥OB,∴CP∥OB,∴∠PCO+∠AOB=180°,∴2∠PCO=360°-2∠AOB,∵CP是∠OCD的平分線,∴∠OCD=2∠PCO=360°-2∠AOB,∵由(2)知,∠OCD+∠BO′E′=360°-α=360°-∠AOB,∴360°-2∠AOB+∠BO′E′=360°-∠AOB,∴∠AOB=∠BO′E′.【點(diǎn)睛】此題考查了平行線的判定和性質(zhì),平移的性質(zhì),直角的定義,角平分線的定義,正確作出輔助線是解決問(wèn)題的關(guān)鍵.3.(1)∠AEP+∠PFC=∠EPF;(2)∠AEP+∠EPF+∠PFC=360°;(3)①150°或30;②∠EPF+2∠EQF=360°或∠EPF=2∠EQF【分析】(1)由于點(diǎn)是平行線,之間解析:(1)∠AEP+∠PFC=∠EPF;(2)∠AEP+∠EPF+∠PFC=360°;(3)①150°或30;②∠EPF+2∠EQF=360°或∠EPF=2∠EQF【分析】(1)由于點(diǎn)是平行線,之間有一動(dòng)點(diǎn),因此需要對(duì)點(diǎn)的位置進(jìn)行分類討論:如圖1,當(dāng)點(diǎn)在的左側(cè)時(shí),,,滿足數(shù)量關(guān)系為:;(2)當(dāng)點(diǎn)在的右側(cè)時(shí),,,滿足數(shù)量關(guān)系為:;(3)①若當(dāng)點(diǎn)在的左側(cè)時(shí),;當(dāng)點(diǎn)在的右側(cè)時(shí),可求得;②結(jié)合①可得,由,得出;可得,由,得出.【詳解】解:(1)如圖1,過(guò)點(diǎn)作,,,,,,;(2)如圖2,當(dāng)點(diǎn)在的右側(cè)時(shí),,,滿足數(shù)量關(guān)系為:;過(guò)點(diǎn)作,,,,,,;(3)①如圖3,若當(dāng)點(diǎn)在的左側(cè)時(shí),,,,分別平分和,,,;如圖4,當(dāng)點(diǎn)在的右側(cè)時(shí),,,;故答案為:或30;②由①可知:,;,.綜合以上可得與的數(shù)量關(guān)系為:或.【點(diǎn)睛】本題主要考查了平行線的性質(zhì),平行公理和及推論等知識(shí)點(diǎn),作輔助線后能求出各個(gè)角的度數(shù),是解此題的關(guān)鍵.4.(1)∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND;(2)120°;(3)不變,30°【分析】(1)過(guò)E作EH∥AB,易得EH∥AB∥CD,根據(jù)平行線的性質(zhì)可求解;過(guò)F作FH∥AB解析:(1)∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND;(2)120°;(3)不變,30°【分析】(1)過(guò)E作EH∥AB,易得EH∥AB∥CD,根據(jù)平行線的性質(zhì)可求解;過(guò)F作FH∥AB,易得FH∥AB∥CD,根據(jù)平行線的性質(zhì)可求解;(2)根據(jù)(1)的結(jié)論及角平分線的定義可得2(∠BME+∠END)+∠BMF-∠FND=180°,可求解∠BMF=60°,進(jìn)而可求解;(3)根據(jù)平行線的性質(zhì)及角平分線的定義可推知∠FEQ=∠BME,進(jìn)而可求解.【詳解】解:(1)過(guò)E作EH∥AB,如圖1,∴∠BME=∠MEH,∵AB∥CD,∴HE∥CD,∴∠END=∠HEN,∴∠MEN=∠MEH+∠HEN=∠BME+∠END,即∠BME=∠MEN﹣∠END.如圖2,過(guò)F作FH∥AB,∴∠BMF=∠MFK,∵AB∥CD,∴FH∥CD,∴∠FND=∠KFN,∴∠MFN=∠MFK﹣∠KFN=∠BMF﹣∠FND,即:∠BMF=∠MFN+∠FND.故答案為∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.(2)由(1)得∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.∵NE平分∠FND,MB平分∠FME,∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END,∵2∠MEN+∠MFN=180°,∴2(∠BME+∠END)+∠BMF﹣∠FND=180°,∴2∠BME+2∠END+∠BMF﹣∠FND=180°,即2∠BMF+∠FND+∠BMF﹣∠FND=180°,解得∠BMF=60°,∴∠FME=2∠BMF=120°;(3)∠FEQ的大小沒(méi)發(fā)生變化,∠FEQ=30°.由(1)知:∠MEN=∠BME+∠END,∵EF平分∠MEN,NP平分∠END,∴∠FEN=∠MEN=(∠BME+∠END),∠ENP=∠END,∵EQ∥NP,∴∠NEQ=∠ENP,∴∠FEQ=∠FEN﹣∠NEQ=(∠BME+∠END)﹣∠END=∠BME,∵∠BME=60°,∴∠FEQ=×60°=30°.【點(diǎn)睛】本題主要考查平行線的性質(zhì)及角平分線的定義,作平行線的輔助線是解題的關(guān)鍵.5.(1)65°;(2);(3)2n∠M+∠BED=360°【分析】(1)首先作EG∥AB,F(xiàn)H∥AB,連結(jié)MF,利用平行線的性質(zhì)可得∠ABE+∠CDE=260°,再利用角平分線的定義得到∠ABF+解析:(1)65°;(2);(3)2n∠M+∠BED=360°【分析】(1)首先作EG∥AB,F(xiàn)H∥AB,連結(jié)MF,利用平行線的性質(zhì)可得∠ABE+∠CDE=260°,再利用角平分線的定義得到∠ABF+∠CDF=130°,從而得到∠BFD的度數(shù),再根據(jù)角平分線的定義和三角形外角的性質(zhì)可求∠M的度數(shù);(2)先由已知得到∠ABE=6∠ABM,∠CDE=6∠CDM,由(1)得∠ABE+∠CDE=360°-∠BED,∠M=∠ABM+∠CDM,等量代換即可求解;(3)由(2)的方法可得到2n∠M+∠BED=360°.【詳解】解:(1)如圖1,作,,連結(jié),,,,,,,,,,和的角平分線相交于,,,、分別是和的角平分線,,,,;(2)如圖1,,,,,與兩個(gè)角的角平分線相交于點(diǎn),,,,,,;(3)由(2)結(jié)論可得,,,則.【點(diǎn)睛】本題主要考查了平行線的性質(zhì)和四邊形的內(nèi)角和,關(guān)鍵在于掌握兩直線平行同位角相等,內(nèi)錯(cuò)角相等,同旁內(nèi)角互補(bǔ)的性質(zhì).二、解答題6.(1)平行,理由見(jiàn)解析;(2)35°或145°,畫(huà)圖、過(guò)程見(jiàn)解析;(3)50°或130°或60°或120°【分析】(1)過(guò)點(diǎn)C作CF∥AB,根據(jù)∠B=50°,∠C=85°,∠D=35°,即可得C解析:(1)平行,理由見(jiàn)解析;(2)35°或145°,畫(huà)圖、過(guò)程見(jiàn)解析;(3)50°或130°或60°或120°【分析】(1)過(guò)點(diǎn)C作CF∥AB,根據(jù)∠B=50°,∠C=85°,∠D=35°,即可得CF∥ED,進(jìn)而可以判斷AB平行于ED;(2)根據(jù)題意作AB∥CD,即可∠B=∠C=35°;(3)分別畫(huà)圖,根據(jù)平行線的性質(zhì)計(jì)算出∠B的度數(shù).【詳解】解:(1)AB平行于ED,理由如下:如圖2,過(guò)點(diǎn)C作CF∥AB,∴∠BCF=∠B=50°,∵∠BCD=85°,∴∠FCD=85°-50°=35°,∵∠D=35°,∴∠FCD=∠D,∴CF∥ED,∵CF∥AB,∴AB∥ED;(2)如圖,即為所求作的圖形.∵AB∥CD,∴∠ABC=∠C=35°,∴∠B的度數(shù)為:35°;∵A′B∥CD,∴∠ABC+∠C=180°,∴∠B的度數(shù)為:145°;∴∠B的度數(shù)為:35°或145°;(3)如圖2,過(guò)點(diǎn)C作CF∥AB,∵AB∥DE,∴CF∥DE,∴∠FCD=∠D=35°,∵∠BCD=85°,∴∠BCF=85°-35°=50°,∴∠B=∠BCF=50°.答:∠B的度數(shù)為50°.如圖5,過(guò)C作CF∥AB,則AB∥CF∥CD,∴∠FCD=∠D=35°,∵∠BCD=85°,∴∠BCF=85°-35°=50°,∵AB∥CF,∴∠B+∠BCF=180°,∴∠B=130°;如圖6,∵∠C=85°,∠D=35°,∴∠CFD=180°-85°-35°=60°,∵AB∥DE,∴∠B=∠CFD=60°,如圖7,同理得:∠B=35°+85°=120°,綜上所述,∠B的度數(shù)為50°或130°或60°或120°.【點(diǎn)睛】本題考查了平行線的判定與性質(zhì),解決本題的關(guān)鍵是區(qū)分平行線的判定與性質(zhì),并熟練運(yùn)用.7.(1)②③;(2)相等,理由見(jiàn)解析;(3)30°或45°或75°或120°或135°【分析】(1)根據(jù)平行線的判定和性質(zhì)分別判定即可;(2)利用角的和差,結(jié)合∠CAB=∠DAE=90°進(jìn)行判斷解析:(1)②③;(2)相等,理由見(jiàn)解析;(3)30°或45°或75°或120°或135°【分析】(1)根據(jù)平行線的判定和性質(zhì)分別判定即可;(2)利用角的和差,結(jié)合∠CAB=∠DAE=90°進(jìn)行判斷;(3)依據(jù)這兩塊三角尺各有一條邊互相平行,分五種情況討論,即可得到∠EAB角度所有可能的值.【詳解】解:(1)①∵∠BFD=60°,∠B=45°,∴∠BAD+∠D=∠BFD+∠B=105°,∴∠BAD=105°-30°=75°,∴∠BAD≠∠B,∴BC和AD不平行,故①錯(cuò)誤;②∵∠BAC+∠DAE=180°,∴∠BAE+∠CAD=∠BAE+∠CAE+∠DAE=180°,故②正確;③若BC∥AD,則∠BAD=∠B=45°,∴∠BAE=45°,即AB平分∠EAD,故③正確;故答案為:②③;(2)相等,理由是:∵∠CAD=150°,∴∠BAE=180°-150°=30°,∴∠BAD=60°,∵∠BAD+∠D=∠BFD+∠B,∴∠BFD=60°+30°-45°=45°=∠C;(3)若AC∥DE,則∠CAE=∠E=60°,∴∠EAB=90°-60°=30°;若BC∥AD,則∠B=∠BAD=45°,∴∠EAB=45°;若BC∥DE,則∠E=∠AFB=60°,∴∠EAB=180°-60°-45°=75°;若AB∥DE,則∠D=∠DAB=30°,∴∠EAB=30°+90°=120°;若AE∥BC,則∠C=∠CAE=45°,∴∠EAB=45°+90°=135°;綜上:∠EAB的度數(shù)可能為30°或45°或75°或120°或135°.【點(diǎn)睛】本題考查了平行線的判定和性質(zhì),角平分線的定義,解題的關(guān)鍵是理解題意,分情況畫(huà)出圖形,學(xué)會(huì)用分類討論的思想思考問(wèn)題.8.(1)60°;(2)50°;(3)或【分析】(1)根據(jù)平行線的性質(zhì)可得的度數(shù),再根據(jù)角平分線的性質(zhì)可得的度數(shù),應(yīng)用三角形內(nèi)角和計(jì)算的度數(shù),由已知條件,可計(jì)算出的度數(shù);(2)根據(jù)題意畫(huà)出圖形,先解析:(1)60°;(2)50°;(3)或【分析】(1)根據(jù)平行線的性質(zhì)可得的度數(shù),再根據(jù)角平分線的性質(zhì)可得的度數(shù),應(yīng)用三角形內(nèi)角和計(jì)算的度數(shù),由已知條件,可計(jì)算出的度數(shù);(2)根據(jù)題意畫(huà)出圖形,先根據(jù)可計(jì)算出的度數(shù),由可計(jì)算出的度數(shù),再根據(jù)平行線的性質(zhì)和角平分線的性質(zhì),計(jì)算出的度數(shù),即可得出結(jié)論;(3)根據(jù)題意可分兩種情況,①若點(diǎn)運(yùn)動(dòng)到上方,根據(jù)平行線的性質(zhì)由可計(jì)算出的度數(shù),再根據(jù)角平分線的性質(zhì)和平行線的性質(zhì),計(jì)算出的度數(shù),再,,列出等量關(guān)系求解即可等處結(jié)論;②若點(diǎn)運(yùn)動(dòng)到下方,根據(jù)平行線的性質(zhì)由可計(jì)算出的度數(shù),再根據(jù)角平分線的性質(zhì)和平行線的性質(zhì),計(jì)算出的度數(shù),再,列出等量關(guān)系求解即可等處結(jié)論.【詳解】解:(1),,,平分,,,又,;(2)根據(jù)題意畫(huà)圖,如圖1所示,,,,,,,又平分,,;(3)①如圖2所示,,,平分,,,又,,,解得;②如圖3所示,,,平分,,,又,,,解得.綜上的度數(shù)為或.【點(diǎn)睛】本題主要考查平行線的性質(zhì)和角平分線的性質(zhì),兩直線平行,同位角相等.兩直線平行,同旁內(nèi)角互補(bǔ).

兩直線平行,內(nèi)錯(cuò)角相等.合理應(yīng)用平行線的性質(zhì)是解決本題的關(guān)鍵.9.(1)證明見(jiàn)解析;(2)(Ⅰ);(Ⅱ).【分析】(1)先根據(jù)平行線的性質(zhì)可得,再根據(jù)角的和差可得,然后根據(jù)平行線的判定即可得證;(2)(Ⅰ)先根據(jù)平行線的性質(zhì)可得,從而可得,再根據(jù)角的和差可得解析:(1)證明見(jiàn)解析;(2)(Ⅰ);(Ⅱ).【分析】(1)先根據(jù)平行線的性質(zhì)可得,再根據(jù)角的和差可得,然后根據(jù)平行線的判定即可得證;(2)(Ⅰ)先根據(jù)平行線的性質(zhì)可得,從而可得,再根據(jù)角的和差可得,然后根據(jù)即可得;(Ⅱ)設(shè),從而可得,先根據(jù)角平分線的定義可得,再根據(jù)角的和差可得,然后根據(jù)建立方程可求出x的值,從而可得的度數(shù),最后根據(jù)平行線的性質(zhì)即可得.【詳解】(1),,又,,;(2)(Ⅰ),,,,由(1)已得:,,;(Ⅱ)設(shè),則,平分,,,,,由(1)已得:,,即,解得,,又,.【點(diǎn)睛】本題考查了平行線的判定與性質(zhì)、角的和差、角平分線的定義、一元一次方程的幾何應(yīng)用等知識(shí)點(diǎn),熟練掌握平行線的判定與性質(zhì)是解題關(guān)鍵.10.(1)136°;(2)∠AOG+∠NEF=90°,理由見(jiàn)解析;(3)當(dāng)點(diǎn)P在GF上時(shí),∠OPQ=140°﹣∠POQ+∠PQF;當(dāng)點(diǎn)P在線段GF的延長(zhǎng)線上時(shí),140°﹣∠POQ=∠OPQ+∠PQF.解析:(1)136°;(2)∠AOG+∠NEF=90°,理由見(jiàn)解析;(3)當(dāng)點(diǎn)P在GF上時(shí),∠OPQ=140°﹣∠POQ+∠PQF;當(dāng)點(diǎn)P在線段GF的延長(zhǎng)線上時(shí),140°﹣∠POQ=∠OPQ+∠PQF.【分析】(1)如圖1,作CP∥a,則CP∥a∥b,根據(jù)平行線的性質(zhì)可得∠AOG=∠ACP,∠BCP+∠CEF=180°,然后利用∠ACP+∠BCP=90°即可求得答案;(2)如圖2,作CP∥a,則CP∥a∥b,根據(jù)平行線的性質(zhì)可得∠AOG=∠ACP,∠BCP+∠CEF=180°,然后結(jié)合已知條件可得∠BCP=∠NEF,然后利用∠ACP+∠BCP=90°即可得到結(jié)論;(3)分兩種情況,如圖3,當(dāng)點(diǎn)P在GF上時(shí),過(guò)點(diǎn)P作PN∥OG,則NP∥OG∥EF,根據(jù)平行線的性質(zhì)可推出∠OPQ=∠GOP+∠PQF,進(jìn)一步可得結(jié)論;如圖4,當(dāng)點(diǎn)P在線段GF的延長(zhǎng)線上時(shí),同上面方法利用平行線的性質(zhì)解答即可.【詳解】解:(1)如圖1,作CP∥a,∵,∴CP∥a∥b,∴∠AOG=∠ACP,∠BCP+∠CEF=180°,∴∠BCP=180°﹣∠CEF,∵∠ACP+∠BCP=90°,∴∠AOG+180°﹣∠CEF=90°,∵∠AOG=46°,∴∠CEF=136°,故答案為136°;(2)∠AOG+∠NEF=90°.理由如下:如圖2,作CP∥a,則CP∥a∥b,∴∠AOG=∠ACP,∠BCP+∠CEF=180°,而∠NEF+∠CEF=180°,∴∠BCP=∠NEF,∵∠ACP+∠BCP=90°,∴∠AOG+∠NEF=90°;(3)如圖3,當(dāng)點(diǎn)P在GF上時(shí),過(guò)點(diǎn)P作PN∥OG,∴NP∥OG∥EF,∴∠GOP=∠OPN,∠PQF=∠NPQ,∴∠OPQ=∠GOP+∠PQF,∴∠OPQ=140°﹣∠POQ+∠PQF;如圖4,當(dāng)點(diǎn)P在線段GF的延長(zhǎng)線上時(shí),過(guò)點(diǎn)P作PN∥OG,∴NP∥OG∥EF,∴∠GOP=∠OPN,∠PQF=∠NPQ,∵∠OPN=∠OPQ+∠QPN,∴∠GOP=∠OPQ+∠PQF,∴140°﹣∠POQ=∠OPQ+∠PQF.【點(diǎn)睛】本題考查了平行線的性質(zhì)以及平行公理的推論等知識(shí),屬于常考題型,正確添加輔助線、靈活應(yīng)用平行線的判定和性質(zhì)是解題的關(guān)鍵.三、解答題11.(1)120°;(2)∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,證明見(jiàn)詳解.【分析】(1)根據(jù)題意,當(dāng)點(diǎn)與點(diǎn)、在一直線上時(shí),作出圖形,由AB∥CD,∠FHP=60°,可以推出解析:(1)120°;(2)∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,證明見(jiàn)詳解.【分析】(1)根據(jù)題意,當(dāng)點(diǎn)與點(diǎn)、在一直線上時(shí),作出圖形,由AB∥CD,∠FHP=60°,可以推出=60°,計(jì)算∠PFD即可;(2)根據(jù)點(diǎn)P是動(dòng)點(diǎn),分三種情況討論:①當(dāng)點(diǎn)P在AB與CD之間時(shí);②當(dāng)點(diǎn)P在AB上方時(shí);③當(dāng)點(diǎn)P在CD下方時(shí),分別求出∠AEP、∠EPF、∠CFP之間的關(guān)系即可.【詳解】(1)當(dāng)點(diǎn)與點(diǎn)、在一直線上時(shí),作圖如下,∵AB∥CD,∠FHP=60°,,∴=∠FHP=60°,∴∠EFD=180°-∠GEP=180°-60°=120°,∴∠PFD=120°,故答案為:120°;(2)滿足關(guān)系式為∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP.證明:根據(jù)點(diǎn)P是動(dòng)點(diǎn),分三種情況討論:①當(dāng)點(diǎn)P在AB與CD之間時(shí),過(guò)點(diǎn)P作PQ∥AB,如下圖,∵AB∥CD,∴PQ∥AB∥CD,∴∠AEP=∠EPQ,∠CFP=∠FPQ,∴∠EPF=∠EPQ+∠FPQ=∠AEP+∠CFP,即∠EPF=∠AEP+∠CFP;②當(dāng)點(diǎn)P在AB上方時(shí),如下圖所示,∵∠AEP=∠EPF+∠EQP,∵AB∥CD,∴∠CFP=∠EQP,∴∠AEP=∠EPF+∠CFP;③當(dāng)點(diǎn)P在CD下方時(shí),∵AB∥CD,∴∠AEP=∠EQF,∴∠EQF=∠EPF+∠CFP,∴∠AEP=∠EPF+∠CFP,綜上所述,∠AEP、∠EPF、∠CFP之間滿足的關(guān)系式為:∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,故答案為:∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP.【點(diǎn)睛】本題考查了平行線的性質(zhì),外角的性質(zhì),掌握平行線的性質(zhì)是解題的關(guān)鍵,注意分情況討論問(wèn)題.12.(1)∠E=45°;(2)∠E=;(3)不變化,【分析】(1)由三角形內(nèi)角和定理,可得∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,由角平分線的性質(zhì),可得∠ECD=∠ECB=∠解析:(1)∠E=45°;(2)∠E=;(3)不變化,【分析】(1)由三角形內(nèi)角和定理,可得∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,由角平分線的性質(zhì),可得∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD,則可得∠E=(∠D+∠B),繼而求得答案;(2)首先延長(zhǎng)BC交AD于點(diǎn)F,由三角形外角的性質(zhì),可得∠BCD=∠B+∠BAD+∠D,又由角平分線的性質(zhì),即可求得答案.(3)由三角形內(nèi)角和定理,可得,利用角平分線的性質(zhì)與三角形的外角的性質(zhì)可得答案.【詳解】解:(1)∵CE平分∠BCD,AE平分∠BAD∴∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD,∵∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,∴∠D+∠ECD+∠B+∠EAB=∠E+∠EAD+∠E+∠ECB∴∠D+∠B=2∠E,∴∠E=(∠D+∠B),∵∠ADC=50°,∠ABC=40°,∴∠AEC=×(50°+40°)=45°;(2)延長(zhǎng)BC交AD于點(diǎn)F,∵∠BFD=∠B+∠BAD,∴∠BCD=∠BFD+∠D=∠B+∠BAD+∠D,∵CE平分∠BCD,AE平分∠BAD∴∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD,∵∠E+∠ECB=∠B+∠EAB,∴∠E=∠B+∠EAB-∠ECB=∠B+∠BAE-∠BCD=∠B+∠BAE-(∠B+∠BAD+∠D)=(∠B-∠D),∠ADC=α°,∠ABC=β°,即∠AEC=(3)的值不發(fā)生變化,理由如下:如圖,記與交于,與交于,①,②,①-②得:AD平分∠BAC,【點(diǎn)睛】此題考查了三角形內(nèi)角和定理、三角形外角的性質(zhì)以及角平分線的定義.此題難度較大,注意掌握整體思想與數(shù)形結(jié)合思想的應(yīng)用.13.(1)證明見(jiàn)解析;(2)900°,180°(n-1);(3)(180n-180-2m)°【詳解】【模型】(1)證明:過(guò)點(diǎn)E作EF∥CD,∵AB∥CD,∴EF∥AB,∴∠1+∠MEF解析:(1)證明見(jiàn)解析;(2)900°,180°(n-1);(3)(180n-180-2m)°【詳解】【模型】(1)證明:過(guò)點(diǎn)E作EF∥CD,∵AB∥CD,∴EF∥AB,∴∠1+∠MEF=180°,同理∠2+∠NEF=180°∴∠1+∠2+∠MEN=360°【應(yīng)用】(2)分別過(guò)E點(diǎn),F(xiàn)點(diǎn),G點(diǎn),H點(diǎn)作L1,L2,L3,L4平行于AB,利用(1)的方法可得∠1+∠2+∠3+∠4+∠5+∠6=180×5=900°;由上面的解題方法可得:∠1+∠2+∠3+∠4+∠5+∠6+…+∠n=180°(n-1),故答案是:900°,180°(n-1);(3)過(guò)點(diǎn)O作SR∥AB,∵AB∥CD,∴SR∥CD,∴∠AM1O=∠M1OR同理∠CMnO=∠MnOR∴∠AM1O+∠CMnO=∠M1OR+∠MnOR,∴∠AM1O+∠CMnO=∠M1OMn=m°,∵M(jìn)1O平分∠AM1M2,∴∠AM1M2=2∠AM1O,同理∠CMnMn-1=2∠CMnO,∴∠AM1M2+∠CMnMn-1=2∠AM1O+2∠CMnO=2∠M1OMn=2m°,又∵∠AM1M2+∠2+∠3+∠4+∠5+∠6+……+∠n-1+∠CMnMn-1=180°(n-1),∴∠2+∠3+∠4+∠5+∠6+…+∠n-1=(180n-180-2m)°點(diǎn)睛:本題考查了平行線的性質(zhì),角平分線的定義,解決此類題目,過(guò)拐點(diǎn)作平行線是解題的關(guān)鍵,準(zhǔn)確識(shí)圖理清圖中各角度之間的關(guān)系也很重要.14.(1)見(jiàn)解析;(2)①③;(3)∠APB的度數(shù)是10°或20°或40°或110°【分析】(1)由和是的角平分線,證明即可;(2)根據(jù)“準(zhǔn)互余三角形”的定義逐個(gè)判斷即可;(3)根據(jù)“準(zhǔn)互余三角解析:(1)見(jiàn)解析;(2)①③;(3)∠APB的度數(shù)是10°或20°或40°或110°【分析】(1)由和是的角平分線,證明即可;(2)根據(jù)“準(zhǔn)互余三角形”的定義逐個(gè)判斷

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論