天津市寶坻區(qū)高中2023-2024學(xué)年數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題含解析_第1頁(yè)
天津市寶坻區(qū)高中2023-2024學(xué)年數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題含解析_第2頁(yè)
天津市寶坻區(qū)高中2023-2024學(xué)年數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題含解析_第3頁(yè)
天津市寶坻區(qū)高中2023-2024學(xué)年數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題含解析_第4頁(yè)
天津市寶坻區(qū)高中2023-2024學(xué)年數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩12頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

天津市寶坻區(qū)高中2023-2024學(xué)年數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.雙曲線的漸近線的斜率是()A.1 B.C. D.2.已知直線與直線垂直,則實(shí)數(shù)a為()A. B.或C. D.或3.已知直線在x軸和y軸上的截距相等,則a的值是()A或1 B.或C. D.14.從1,2,3,4,5中任取2個(gè)不同的數(shù),兩數(shù)和為偶數(shù)的概率為()A. B.C. D.5.設(shè)是等差數(shù)列的前n項(xiàng)和,若,,則()A.26 B.-7C.-10 D.-136.命題:,否定是()A., B.,C., D.,7.用數(shù)學(xué)歸納法證明“”的過(guò)程中,從到時(shí),不等式的左邊增加了()A. B.C. D.8.繞著它的一邊旋轉(zhuǎn)一周得到的幾何體可能是()A.圓臺(tái) B.圓臺(tái)或兩個(gè)圓錐的組合體C.圓錐或兩個(gè)圓錐的組合體 D.圓柱9.已知P是直線上的動(dòng)點(diǎn),PA,PB是圓的切線,A,B為切點(diǎn),C為圓心,那么四邊形PACB的面積的最小值是()A2 B.C.3 D.10.在等比數(shù)列中,,,則等于A. B.C. D.或11.已知拋物線上一點(diǎn)到其焦點(diǎn)的距離為5,雙曲線的左頂點(diǎn)為A,若雙曲線的一條漸近線與直線AM平行,則實(shí)數(shù)n的值是()A. B.C. D.12.在中,、、所對(duì)的邊分別為、、,若,,,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.曲線在處的切線斜率為___________.14.已知在△中,角A,B,C的對(duì)邊分別是a,b,c,若△的面積為2,邊上中線的長(zhǎng)為.且,則△外接圓的面積為___________15.若圓被直線平分,則值為__________16.若關(guān)于的不等式恒成立,則實(shí)數(shù)的取值范圍是______.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知拋物線,過(guò)點(diǎn)作直線(1)若直線的斜率存在,且與拋物線只有一個(gè)公共點(diǎn),求直線的方程(2)若直線過(guò)拋物線的焦點(diǎn),且交拋物線于兩點(diǎn),求弦長(zhǎng)18.(12分)已知橢圓F:經(jīng)過(guò)點(diǎn)且離心率為,直線和是分別過(guò)橢圓F的左、右焦點(diǎn)的兩條動(dòng)直線,它們與橢圓分別相交于點(diǎn)A、B和C、D,O為坐標(biāo)原點(diǎn),直線AB和直線CD相交于M.記直線的斜率分別為,且(1)求橢圓F標(biāo)準(zhǔn)方程(2)是否存在定點(diǎn)P,Q,使得為定值.若存在,請(qǐng)求出P、Q的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由19.(12分)設(shè)函數(shù)(1)若,求的單調(diào)區(qū)間和極值;(2)在(1)的條件下,證明:若存在零點(diǎn),則在區(qū)間上僅有一個(gè)零點(diǎn);(3)若存在,使得,求的取值范圍20.(12分)如圖,在三棱錐中,,,為的中點(diǎn)(1)證明:平面;(2)若點(diǎn)在棱上,且二面角為,求與平面所成角正弦值.21.(12分)在二項(xiàng)式展開式中,第3項(xiàng)和第4項(xiàng)的二項(xiàng)式系數(shù)比為.(1)求n的值及展開式中的常數(shù)項(xiàng);(2)求展開式中系數(shù)最大的項(xiàng)是第幾項(xiàng).22.(10分)設(shè)函數(shù)(1)若在處取得極值,求a的值;(2)若在上單調(diào)遞減,求a的取值范圍

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】由雙曲線的漸近線方程為:,化簡(jiǎn)即可得到答案.【詳解】雙曲線的漸近線方程為:,即,漸近線的斜率是.故選:B2、B【解析】由題可得,即得.【詳解】∵直線與直線垂直,∴,解得或.故選:B.3、A【解析】分截距都為零和都不為零討論即可.【詳解】當(dāng)截距都為零時(shí),直線過(guò)原點(diǎn),;當(dāng)截距不為零時(shí),,.綜上:或.故選:A.4、B【解析】利用列舉法,結(jié)合古典概型概率計(jì)算公式,計(jì)算出所求概率.【詳解】從中任取個(gè)不同的數(shù)的方法有,共種,其中和為偶數(shù)的有共種,所以所求的概率為.故選:B【點(diǎn)睛】本小題主要考查古典概型概率計(jì)算,屬于基礎(chǔ)題.5、C【解析】直接利用等差數(shù)列通項(xiàng)和求和公式計(jì)算得到答案.【詳解】,,解得,故.故選:C.6、D【解析】根據(jù)給定條件利用全稱量詞命題的否定是存在量詞命題直接寫出作答.【詳解】命題:,是全稱量詞命題,其否定是存在量詞命題,所以命題:,的否定是:,.故選:D7、B【解析】依題意,由遞推到時(shí),不等式左邊為,與時(shí)不等式的左邊作差比較即可得到答案【詳解】用數(shù)學(xué)歸納法證明等式的過(guò)程中,假設(shè)時(shí)不等式成立,左邊,則當(dāng)時(shí),左邊,∴從到時(shí),不等式的左邊增加了故選:B8、C【解析】討論是按直角邊旋轉(zhuǎn)還是按斜邊旋轉(zhuǎn)【詳解】按直角邊選擇可得下圖圓錐:如果按直角邊旋轉(zhuǎn)可得下圖的兩個(gè)圓錐的組合體:故選:C9、D【解析】由圓C的標(biāo)準(zhǔn)方程可得圓心為(1,1),半徑為1,根據(jù)切線的性質(zhì)可得四邊形PACB面積等于,,故求解最小時(shí)即可確定四邊形PACB面積的最小值.【詳解】圓C:x2+y2-2x-2y+1=0即,表示以C(1,1)為圓心,以1為半徑的圓,由于四邊形PACB面積等于2×××=,而,故當(dāng)最小時(shí),四邊形PACB面積最小,又的最小值等于圓心C到直線l:的距離d,而,故四邊形PACB面積的最小值為,故選:D10、D【解析】∵為等比數(shù)列,∴,又∴為的兩個(gè)不等實(shí)根,∴∴或∴故選D11、C【解析】首先根據(jù)拋物線焦半徑公式得到,從而得到,再根據(jù)曲線的一條漸近線與直線AM平行,斜率相等求解即可.【詳解】由題知:,解得,拋物線.雙曲線的左頂點(diǎn)為,,因?yàn)殡p曲線的一條漸近線與直線平行,所以,解得.故選:C12、B【解析】利用正弦定理,以及大邊對(duì)大角,結(jié)合正弦定理,即可求得.【詳解】根據(jù)題意,由正弦定理,可得:,解得,故可得或,由,可得,故故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】首先求得的導(dǎo)數(shù),由導(dǎo)數(shù)的幾何意義可得切線的斜率.【詳解】因?yàn)楹瘮?shù)的導(dǎo)數(shù)為,所以可得在處的切線斜率,故答案為:14、或【解析】由已知,結(jié)合正弦定理邊角關(guān)系及三角形內(nèi)角的性質(zhì)可得,再根據(jù)三角形面積公式、余弦定理列方程求邊長(zhǎng)b、c,應(yīng)用余弦定理求邊長(zhǎng)a,根據(jù)正弦定理求外接圓半徑,再用圓的面積公式求面積.【詳解】由題設(shè)及正弦定理邊角關(guān)系有,又,∴,∴,∴.又,∴,即又據(jù)題意,得,且,∴或,故或,∴△外接圓的半徑或,∴△外接圓的面積為或故答案為:或15、;【解析】求出圓的圓心坐標(biāo),代入直線方程求解即可【詳解】解:的圓心圓被直線平分,可知直線經(jīng)過(guò)圓的圓心,可得解得;故答案為:1【點(diǎn)睛】本題考查直線與圓的位置關(guān)系的應(yīng)用,屬于基礎(chǔ)題16、【解析】設(shè)由題可知,當(dāng)時(shí),可得適合題意,當(dāng)時(shí),可求函數(shù)的最小值即得,當(dāng)時(shí)不合題意,即得.【詳解】設(shè),由題可知,∴,當(dāng)時(shí),,適合題意,所以,當(dāng)時(shí),令,則,此時(shí)時(shí),,單調(diào)遞減,,,單調(diào)遞增,∴,又,∴,∴,即,解得,當(dāng)時(shí),時(shí),,,故的值有正有負(fù),不合題意;綜上,實(shí)數(shù)的取值范圍是.故答案為:.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題考查不等式恒成立求參數(shù)的取值范圍,設(shè)由題可知,當(dāng)時(shí),利用導(dǎo)數(shù)可求函數(shù)的最小值,結(jié)合,可得,進(jìn)而通過(guò)解,即得.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)或;(2)8【解析】(1)根據(jù)題意設(shè)直線的方程為,聯(lián)立,消去得,因?yàn)橹挥幸粋€(gè)公共點(diǎn),則求解.(2)拋物線的焦點(diǎn)為,設(shè)直線的方程為,聯(lián)立,消去得,再根據(jù)過(guò)拋物線焦點(diǎn)的弦長(zhǎng)公式求解.【詳解】(1)設(shè)直線的方程為,聯(lián)立,消去得,則,解得或,∴直線的方程為:或(2)拋物線的焦點(diǎn)為,則直線的方程為,設(shè),聯(lián)立,消去得,∴,∴【點(diǎn)睛】本題主要考查直線與拋物線的位置關(guān)系,還考查了運(yùn)算求解的能力,屬于中檔題.18、(1);(2)存在點(diǎn),使得為定值.【解析】(1)設(shè),,,結(jié)合條件即求;(2)由題可設(shè)直線方程,利用韋達(dá)定理法可得,再結(jié)合條件可得點(diǎn)的軌跡方程為,然后利用橢圓的定義即得結(jié)論.【小問(wèn)1詳解】設(shè),,,橢圓方程為:,橢圓過(guò)點(diǎn),,解得t=1,所以橢圓F的方程是【小問(wèn)2詳解】由題可得焦點(diǎn)的坐標(biāo)分別為,當(dāng)直線AB或CD的斜率不存在時(shí),點(diǎn)M的坐標(biāo)為或,當(dāng)直線AB和CD的斜率都存在時(shí),設(shè)斜率分別為,點(diǎn),直線AB為,聯(lián)立,得則,,同理可得,,因?yàn)椋裕?jiǎn)得由題意,知,所以設(shè)點(diǎn),則,所以,化簡(jiǎn)得,當(dāng)直線或的斜率不存在時(shí),點(diǎn)M的坐標(biāo)為或,也滿足此方程所以點(diǎn)在橢圓上,根據(jù)橢圓定義可知,存在定點(diǎn),使得為定值【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題的關(guān)鍵是利用韋達(dá)定理法及題設(shè)條件求出點(diǎn)M的軌跡方程,再結(jié)合橢圓的定義,從而問(wèn)題得到解決.19、(1)遞減區(qū)間是,單調(diào)遞增區(qū)間是,極小值(2)證明見(jiàn)解析(3)【解析】(1)對(duì)函數(shù)進(jìn)行求導(dǎo)通分化簡(jiǎn),求出解得,在列出與在區(qū)間上的表格,即可得到答案.(2)由(1)知,在區(qū)間上的最小值為,因?yàn)榇嬖诹泓c(diǎn),所以,從而.在對(duì)進(jìn)行分類討論,再利用函數(shù)的單調(diào)性得出結(jié)論.(3)構(gòu)造函數(shù),在對(duì)進(jìn)行求導(dǎo),在對(duì)進(jìn)行分情況討論,即可得的得到答案.【小問(wèn)1詳解】函數(shù)的定義域?yàn)?,,由解得與在區(qū)間上的情況如下:–↘↗所以,的單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間是;在處取得極小值,無(wú)極大值【小問(wèn)2詳解】由(1)知,在區(qū)間上的最小值為因?yàn)榇嬖诹泓c(diǎn),所以,從而當(dāng)時(shí),在區(qū)間上單調(diào)遞減,且,所以是在區(qū)間上的唯一零點(diǎn)當(dāng)時(shí),在區(qū)間上單調(diào)遞減,且,所以在區(qū)間上僅有一個(gè)零點(diǎn)綜上可知,若存在零點(diǎn),則在區(qū)間上僅有一個(gè)零點(diǎn)【小問(wèn)3詳解】設(shè),①若,則,符合題意②若,則,故當(dāng)時(shí),,在上單調(diào)遞增所以,存在,使得的充要條件為,解得③若,則,故當(dāng)時(shí),;當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增所以,存在,使得的充要條件為,而,所以不合題意綜上,的取值范圍是【點(diǎn)睛】本題考查求函數(shù)的單調(diào)區(qū)間和極值、證明給定區(qū)間只有一個(gè)零點(diǎn)問(wèn)題,以及含參存在問(wèn)題,屬于難題.20、(1)證明見(jiàn)解析;(2).【解析】(1)根據(jù)等腰三角形性質(zhì)得PO垂直AC,再通過(guò)計(jì)算,根據(jù)勾股定理得PO垂直O(jiān)B,最后根據(jù)線面垂直判定定理得結(jié)論;(2)根據(jù)條件建立空間直角坐標(biāo)系,設(shè)立各點(diǎn)坐標(biāo),根據(jù)方程組解出平面PAM一個(gè)法向量,利用向量數(shù)量積求出兩個(gè)法向量夾角,根據(jù)二面角與法向量夾角相等或互補(bǔ)關(guān)系列方程,解得M坐標(biāo),再利用向量數(shù)量積求得向量PC與平面PAM法向量夾角,最后根據(jù)線面角與向量夾角互余得結(jié)果【詳解】(1)因?yàn)?,為的中點(diǎn),所以,且連結(jié)因?yàn)椋詾榈妊苯侨切?,且由知由知平面?)如圖,以為坐標(biāo)原點(diǎn),的方向?yàn)檩S正方向,建立空間直角坐標(biāo)系由已知得取平面的法向量設(shè),則設(shè)平面的法向量為由得,可取所以.由已知得所以.解得(舍去),所以又,所以所以與平面所成角的正弦值為【點(diǎn)睛】利用法向量求解空間線面角的關(guān)鍵在于“四破”:第一,破“建系關(guān)”,構(gòu)建恰當(dāng)?shù)目臻g直角坐標(biāo)系;第二,破“求坐標(biāo)關(guān)”,準(zhǔn)確求解相關(guān)點(diǎn)的坐標(biāo);第三,破“求法向量關(guān)”,求出平面的法向量;第四,破“應(yīng)用公式關(guān)”21、(1),常數(shù)項(xiàng)為(2)5【解析】(1)求出二項(xiàng)式的通項(xiàng)公式,求出第3項(xiàng)和第4項(xiàng)的二項(xiàng)式系數(shù),再利用已知條件列方程求出的值,從而可求出常數(shù)項(xiàng),(2)設(shè)展開式中系數(shù)最大的項(xiàng)是第項(xiàng),則,從而可求出結(jié)果【小問(wèn)1詳解】二項(xiàng)式展開式的通項(xiàng)公式為,因?yàn)榈?項(xiàng)和第4項(xiàng)的二項(xiàng)式系數(shù)比為,所以,化簡(jiǎn)得,解得,所以,令,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論