




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
云南農(nóng)業(yè)大學附屬中學2023-2024學年高二上數(shù)學期末學業(yè)質量監(jiān)測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在空間直角坐標系中,為直線的一個方向向量,為平面的一個法向量,且,則()A. B.C. D.2.將5名北京冬奧會志愿者分配到花樣滑冰、短道速滑、冰球和冰壺4個項目進行培訓,每名志愿者只分配到1個項目,每個項目至少分配1名志愿者,則不同的分配方案共有()A.60種 B.120種C.240種 D.480種3.若函數(shù)f(x)=x2+x+1在區(qū)間內(nèi)有極值點,則實數(shù)a的取值范圍是()A. B.C. D.4.如圖,已知多面體,其中是邊長為4的等邊三角形,四邊形是矩形,,平面平面,則點到平面的距離是()A. B.C. D.5.已知等差數(shù)列的前項和為,若,則()A B.C. D.6.已知兩圓相交于兩點和,兩圓的圓心都在直線上,則的值為A. B.2C.3 D.07.下列問題中是古典概型的是A.種下一粒楊樹種子,求其能長成大樹的概率B.擲一顆質地不均勻的骰子,求出現(xiàn)1點的概率C.在區(qū)間[1,4]上任取一數(shù),求這個數(shù)大于1.5概率D.同時擲兩枚質地均勻的骰子,求向上的點數(shù)之和是5的概率8.命題“,”否定是()A., B.,C., D.,9.在正方體中,P,Q兩點分別從點B和點出發(fā),以相同的速度在棱BA和上運動至點A和點,在運動過程中,直線PQ與平面ABCD所成角的變化范圍為A. B.C. D.10.過雙曲線的右焦點有一條弦是左焦點,那么的周長為()A.28 B.C. D.11.已知等差數(shù)列的公差,若,,則該數(shù)列的前項和的最大值為()A.30 B.35C.40 D.4512.若直線l的傾斜角是鈍角,則l的方程可能是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在棱長為1的正方體中,點M為線段上的動點,下列四個結論:①存在點M,使得直線AM與直線夾角為30°;②存在點M,使得與平面夾角的正弦值為;③存在點M,使得三棱錐體積為;④存在點M,使得,其中為二面角的大小,為直線與直線AB所成的角則上述結論正確的有______.(填上正確結論的序號)14.設橢圓標準方程為,則該橢圓的離心率為______15.動點M在圓上移動,則M與定點連線的中點P的軌跡方程為___________.16.如圖,在長方體ABCD﹣A'B'C'D'中,點P,Q分別是棱BC,CD上的動點,BC=4,CD=3,CC'=2,直線CC'與平面PQC'所成的角為30°,則△PQC'的面積的最小值是__三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,正方形與梯形所在的平面互相垂直,,,|AB|=|AD|=2,|CD|=4,為的中點(1)求證:平面平面;(2)求二面角的正切值18.(12分)為弘揚中華優(yōu)秀傳統(tǒng)文化,鼓勵全民閱讀經(jīng)典書籍,某市舉行閱讀月活動,現(xiàn)統(tǒng)計某街道約10000人在該活動月每人每日平均閱讀時間(分鐘)的頻率分布直方圖如圖:(1)求x的值;(2)從該街道任選1人,則估計這個人的每日平均閱讀時間超過60分鐘的概率.19.(12分)有時候一些東西吃起來口味越好,對我們的身體越有害.下表給出了不同品牌的一些食品所含熱量的百分比記為和一些美食家以百分制給出的對此種食品口味的評價分數(shù)記為:食品品牌12345678910所含熱量的百分比25342019262019241914百分制口味評價分數(shù)88898078757165626052參考數(shù)據(jù):,,,參考公式:,(1)已知這些品牌食品的所含熱量的百分比與美食家以百分制給出的對此種食品口味的評價分數(shù)具有相關關系.試求出回歸方程(最后結果精確到);(2)某人只能接受食品所含熱量百分比為及以下的食品.現(xiàn)在他想從這些食品中隨機選取兩種購買,求他所選取的兩種食品至少有一種是美食家以百分制給出的對此種食品口味的評價分數(shù)為分以上的概率.20.(12分)如圖,已知圓臺下底面圓的直徑為,是圓上異于、的點,是圓臺上底面圓上的點,且平面平面,,,、分別是、的中點.(1)證明:平面;(2)若直線上平面且過點,試問直線上是否存在點,使直線與平面所成的角和平面與平面的夾角相等?若存在,求出點的所有可能位置;若不存在,請說明理由.21.(12分)已知數(shù)列的前n項和為,,,其中.(1)記,求證:是等比數(shù)列;(2)設,數(shù)列的前n項和為,求證:.22.(10分)已知在等差數(shù)列中,,(1)求的通項公式;(2)若,求數(shù)列的前項和
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】由已知條件得出,結合空間向量數(shù)量積的坐標運算可求得實數(shù)的值.【詳解】因為,則,解得.故選:B.2、C【解析】先確定有一個項目中分配2名志愿者,其余各項目中分配1名志愿者,然后利用組合,排列,乘法原理求得.【詳解】根據(jù)題意,有一個項目中分配2名志愿者,其余各項目中分配1名志愿者,可以先從5名志愿者中任選2人,組成一個小組,有種選法;然后連同其余三人,看成四個元素,四個項目看成四個不同的位置,四個不同的元素在四個不同的位置的排列方法數(shù)有4!種,根據(jù)乘法原理,完成這件事,共有種不同的分配方案,故選:C.【點睛】本題考查排列組合的應用問題,屬基礎題,關鍵是首先確定人數(shù)的分配情況,然后利用先選后排思想求解.3、C【解析】若f(x)=x2+x+1在區(qū)間內(nèi)有極值點,則f'(x)=x2-ax+1在區(qū)間內(nèi)有零點,且零點不是f'(x)的圖象頂點的橫坐標.由x2-ax+1=0,得a=x+.因為x∈,y=x+的值域是,當a=2時,f'(x)=x2-2x+1=(x-1)2,不合題意.所以實數(shù)a的取值范圍是,故選C.4、C【解析】利用面面垂直性質結合已知尋找兩兩垂直的三條直線建立空間直角坐標系,用向量法可解.【詳解】取的中點O,連接OB,過O在平面ACDE面內(nèi)作交DE于F∵平面平面ABC,平面ACDE平面ABC=AC,平面ACDE,∴平面ABC∴∵是邊長為4的等邊三角形,四邊形ACDE是矩形,∴以O為原點,OA,OB,OF分別為x,y,z軸,建立如圖所示空間直角坐標系則,,,設平面ABD的單位法向量,,由解得取,則∴點C到平面ABD的距離.故選:C5、B【解析】利用等差數(shù)列的性質可求得的值,再結合等差數(shù)列求和公式以及等差中項的性質可求得的值.【詳解】由等差數(shù)列的性質可得,則,故.故選:B.6、C【解析】根據(jù)條件知:兩圓的圓心的所在的直線與兩圓的交點所在的直線垂直,以及兩圓的交點的中點在兩圓的圓心的所在的直線上,由此得到方程,得解.【詳解】由已知兩圓的交點與兩圓的圓心的所在的直線垂直,,所以,又因為兩圓的交點的中點在兩圓的圓心所在的直線上,所以,解得:,所以,故選.【點睛】此題主要考查圓與圓的位置關系,解答此題的關鍵是需知兩圓的圓心所在的直線與兩圓的交點所在的直線垂直,并且兩圓的交點的中點在兩圓的圓心所在的直線上,此題屬于基礎題.7、D【解析】A、B兩項中的基本事件的發(fā)生不是等可能的;C項中基本事件的個數(shù)是無限多個;D項中基本事件的發(fā)生是等可能的,且是有限個.故選D【考點】古典概型的判斷8、D【解析】根據(jù)含有量詞的命題的否定即可得出結論.【詳解】命題為全稱命題,則命題的否定為:,.故選:D.9、C【解析】先過點作于點,連接,根據(jù)題意,得到即為直線與平面所成的角,設正方體棱長為,設,推出,進而可求出結果.【詳解】過點作于點,連接,因為四棱柱為正方體,所以易得平面,因此即為直線與平面所成的角,設正方體棱長為,設,則,,因為兩點分別從點和點出發(fā),以相同的速度在棱和上運動至點和點,所以,因此,所以,因為,所以,則,因此.故選:C.【點睛】本題主要考查求線面角的取值范圍,熟記線面角的定義即可,屬于??碱}型.10、C【解析】根據(jù)雙曲線方程得,,由雙曲線的定義,證出,結合即可算出△的周長【詳解】雙曲線方程為,,根據(jù)雙曲線的定義,得,,,,相加可得,,,因此△的周長,故選:C11、D【解析】利用等差數(shù)列的性質求出公差以及首項,再由等差數(shù)列的前項和公式即可求解.【詳解】等差數(shù)列,由,有,又,公差,所以,,得,,,∴當或10時,最大,,故選:D12、A【解析】根據(jù)直線方程,求得直線斜率,再根據(jù)傾斜角和斜率的關系,即可判斷和選擇.【詳解】若直線的傾斜角為,則,當時,為鈍角,當,,當,為銳角;當不存在時,傾斜角為,對A:,顯然傾斜角為鈍角;對B:,傾斜角為銳角;對C:,傾斜角為銳角;對D:不存在,此時傾斜角為直角.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、②③【解析】對①:由連接,,由平面,即可判斷;對③:設到平面的距離為,則,所以即可判斷;對④:以為坐標原點建立如圖所示的空間直角坐標系,設,利用向量法求出與,比較大小即可判斷;對②:設與平面夾角為,利用向量法求出,即可求解判斷.【詳解】解:對①:連接,,在正方體中,由平面,可得,又,,所以平面,所以,故①錯誤;對③:設到平面的距離為,則,所以,故③正確;對④:以為坐標原點建立如圖所示的空間直角坐標系,設,則,0,,,0,,,,,,,,所以,,,,,,設平面的法向量為,,,則,即,取,,,又,1,是平面的一個法向量,又二面角為銳二面角或直角,所以,,,又,,,故④錯誤對②:由④的解析知,,,,設平面的法向量為,則,即,取,則,設與平面夾角為,令,即,又,解得或,故②正確.故答案為:②③.14、##【解析】求出、的值,即可求得橢圓的離心率.【詳解】在橢圓中,,,則,因此,該橢圓的離心率為.故答案為:.15、##【解析】設,中點,根據(jù)中點坐標公式求出,代入圓的標準方程即可得出結果.【詳解】設,中點,則,即,因為在圓上,代入得故答案為:.16、8【解析】設三棱錐C﹣C′PQ的高為h,CQ=x,CP=y(tǒng),由體積法求得的關系,由直線CC’與平面C’PQ成的角為30°,得到xy≥8,再由VC﹣C′PQ=VC′﹣CPQ,能求出△PQC'的面積的最小值【詳解】解:設三棱錐C﹣C′PQ的高為h,CQ=x,CP=y(tǒng),由長方體性質知兩兩垂直,所以,,,,,所以,由得,所以,∵直線CC’與平面C’PQ成的角為30°,∴h=2,∴,,∴xy≥8,再由體積可知:VC﹣C′PQ=VC′﹣CPQ,得,S△C′PQ=xy,∴△PQC'的面積的最小值是8故答案為:8三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2).【解析】(1)證明BC⊥平面BDE即可;(2)以D為原點,DA、DC、DE分別為x軸、y軸、z軸建立空間直角坐標系D-xyz,求平面BMD和平面BCD的法向量,利用法向量的求二面角的余弦,再求正切﹒【小問1詳解】∵ADEF為正方形∴ED⊥AD又∵正方形ADEF與梯形ABCD所在的平面互相垂直,且ED?平面ADEF∴ED⊥平面ABCD∵BC?平面ABCD∴ED⊥BC在直角梯形ABCD中,|AB|=|AD|=2,|CD|=4,則,|BD|=2,在△BCD中,,∴BC⊥BD∵DE∩BD=D,DE與BD平面BDE,∴BC⊥平面BDE又∵BC?平面BEC∴平面BDE⊥平面BEC;【小問2詳解】由(1)知ED⊥平面ABCD∵CD平面ABCD,∴CD⊥ED,∴DA,DC,DE三線兩兩垂直,故以D為原點,DA、DC、DE分別為x軸、y軸、z軸建立空間直角坐標系D-xyz:則,則設為平面BDM的法向量,則,取,取平面BCD的法向量為,設二面角的大小為θ,則,∴.18、(1)(2)0.7【解析】(1)利用概率和為1計算可得的值;(2)求頻率分布直方圖中每人每日平均閱讀時間超過60分鐘的概率即為這個人閱讀時間超過60分鐘的概率.【小問1詳解】由得【小問2詳解】,估計這個人的每日平均閱讀時間超過60分鐘的概率為19、(1)(2)【解析】(1)首先求出、、,即可求出,從而求出回歸直線方程;(2)由表可知某人只能接受的食品共有種,評價為分以上的有種可記為,,另外種記為,,,,用列舉法列出所有的可能結果,再根據(jù)古典概型的概率公式計算可得;【小問1詳解】解:設所求的回歸方程為,由,,,,所求的回歸方程為:.【小問2詳解】解:由表可知某人只能接受的食品共有種,其中美食家以百分制給出的對此種食品口味的評價為分以上的有種可記為,,另外種記為,,,.任選兩種分別為:,,,,,,,,,,,,,,,共15個基本事件.記“所選取的兩種食品至少有一種是美食家以百分制給出的對此食品口味的評價分數(shù)為分以上”為事件,則事件包含,,,,,,,,共個基本事件,故事件發(fā)生的概率為.20、(1)證明見解析;(2)存在,點與點重合.【解析】(1)證明出,利用面面垂直的性質可證得結論成立;(2)以為坐標原點,為軸,為軸,過垂直于平面的直線為軸,建立空間直角坐標系,易知軸在平面內(nèi),分析可知,設點
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年河北省安全員-C證考試題庫
- 2025湖南省安全員《C證》考試題庫及答案
- 南京審計大學《數(shù)學學科與教學指導實踐》2023-2024學年第二學期期末試卷
- 海南醫(yī)學院《數(shù)字時代品牌傳播》2023-2024學年第二學期期末試卷
- 哈爾濱城市職業(yè)學院《會計電算化實訓》2023-2024學年第二學期期末試卷
- 做賬實操-保險行業(yè)的賬務處理示例
- 2025青海省建筑安全員A證考試題庫附答案
- 南京城市職業(yè)學院《主任工作技能》2023-2024學年第二學期期末試卷
- 湖北國土資源職業(yè)學院《精神分析理論與技術》2023-2024學年第二學期期末試卷
- 徐州工業(yè)職業(yè)技術學院《三維建模與貼圖》2023-2024學年第二學期期末試卷
- 礦山機械傷害安全培訓
- 鄭州2025年河南鄭州市公安機關招聘輔警1200人筆試歷年參考題庫附帶答案詳解
- 2025年語文高考復習計劃解析
- 微電網(wǎng)運行與控制策略-深度研究
- 中職高教版(2023)語文職業(yè)模塊-第五單元:走近大國工匠(一)展示國家工程-了解工匠貢獻【課件】
- 物業(yè)管理車輛出入管理制度
- 家庭康復服務的商業(yè)價值與發(fā)展趨勢
- 2025年施工項目部《春節(jié)節(jié)后復工復產(chǎn)》工作實施方案 (3份)-75
- 礦山安全生產(chǎn)工作總結
- 小學教師培訓課件:做有品位的小學數(shù)學教師
- U8UAP開發(fā)手冊資料
評論
0/150
提交評論