上海市曹揚(yáng)第二中學(xué)2024屆高二數(shù)學(xué)第一學(xué)期期末綜合測試試題含解析_第1頁
上海市曹揚(yáng)第二中學(xué)2024屆高二數(shù)學(xué)第一學(xué)期期末綜合測試試題含解析_第2頁
上海市曹揚(yáng)第二中學(xué)2024屆高二數(shù)學(xué)第一學(xué)期期末綜合測試試題含解析_第3頁
上海市曹揚(yáng)第二中學(xué)2024屆高二數(shù)學(xué)第一學(xué)期期末綜合測試試題含解析_第4頁
上海市曹揚(yáng)第二中學(xué)2024屆高二數(shù)學(xué)第一學(xué)期期末綜合測試試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

上海市曹揚(yáng)第二中學(xué)2024屆高二數(shù)學(xué)第一學(xué)期期末綜合測試試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖,空間四邊形OABC中,,,,點(diǎn)M在上,且,點(diǎn)N為BC中點(diǎn),則()A. B.C. D.2.某路口人行橫道的信號燈為紅燈和綠燈交替出現(xiàn),紅燈持續(xù)時(shí)間為40秒.若一名行人來到該路口遇到紅燈,則至少需要等待18秒才出現(xiàn)綠燈的概率為()A B.C. D.3.若橢圓的一個(gè)焦點(diǎn)為,則的值為()A.5 B.3C.4 D.24.已知集合,,則A. B.C. D.5.已知直線過點(diǎn),,則直線的方程為()A. B.C. D.6.在正方體中,E,F(xiàn)分別為AB,CD的中點(diǎn),則與平面所成的角的正弦值為()A. B.C. D.7.記Sn為等差數(shù)列{an}的前n項(xiàng)和,給出下列4個(gè)條件:①a1=1;②a4=4;③S3=9;④S5=25,若只有一個(gè)條件不成立,則該條件為()A.① B.②C.③ D.④8.已知等比數(shù)列的公比q為整數(shù),且,,則()A.2 B.3C.-2 D.-39.拋物線的焦點(diǎn)為,準(zhǔn)線為,焦點(diǎn)在準(zhǔn)線上的射影為點(diǎn),過任作一條直線交拋物線于兩點(diǎn),則為()A.銳角 B.直角C.鈍角 D.銳角或直角10.甲、乙、丙、丁共4名同學(xué)進(jìn)行黨史知識比賽,決出第1名到第4名的名次(名次無重復(fù)),其中前2名將獲得參加市級比賽的資格,甲和乙去詢問成績,回答者對甲說:“很遺憾,你沒有獲得參加市級比賽的資格.”對乙說:“你當(dāng)然不會(huì)是最差的.”從這兩個(gè)回答分析,4人的排名有()種不同情況.A.6 B.8C.10 D.1211.直線與圓相交于點(diǎn),點(diǎn)是坐標(biāo)原點(diǎn),若是正三角形,則實(shí)數(shù)的值為A.1 B.-1C. D.12.“x>1”是“x>0”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)正方形的邊長是,在該正方形區(qū)域內(nèi)隨機(jī)取一個(gè)點(diǎn),則此點(diǎn)到點(diǎn)的距離大于的概率是_____14.等差數(shù)列前項(xiàng)之和為,若,則________15.已知,用割線逼近切線的方法可以求得___________.16.已知函數(shù)在處有極值2,則______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)討論函數(shù)的單調(diào)性;(2)若恒成立,求實(shí)數(shù)的取值范圍.18.(12分)如圖,直四棱柱的底面是菱形,,,直線與平面ABCD所成角的正弦值為.E,F(xiàn)分別為、的中點(diǎn).(1)求證:平面BED;(2)求直線與平面FAC所成角的正弦值.19.(12分)已知橢圓的右焦點(diǎn)是橢圓上的一動(dòng)點(diǎn),且的最小值是1,當(dāng)垂直長軸時(shí),.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)直線與橢圓相切,且交圓于兩點(diǎn),求面積的最大值,并求此時(shí)直線方程.20.(12分)已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,焦距為2,離心率為(1)求橢圓C的方程;(2)設(shè)直線l經(jīng)過點(diǎn)M(0,1),且與橢圓C交于A,B兩點(diǎn),若,求直線l的方程21.(12分)已知橢圓的左、右焦點(diǎn)分別是,,離心率為,過且垂直于x軸的直線被橢圓C截得的線段長為1(1)求橢圓C方程;(2)設(shè)點(diǎn)P在直線上,過點(diǎn)P的兩條直線分別交曲線C于A,B兩點(diǎn)和M,N兩點(diǎn),且,求直線AB的斜率與直線MN的斜率之和22.(10分)男子10米氣步槍比賽規(guī)則如下:在資格賽中,射手在距離靶子10米處,采用立姿,在105分鐘內(nèi)射擊60發(fā)子彈,總環(huán)數(shù)排名前8名的射手進(jìn)入決賽;在決賽中,每位射手僅射擊10發(fā)子彈.已知甲乙兩名運(yùn)動(dòng)員均進(jìn)入了決賽,資格賽中的環(huán)數(shù)情況整理得下表:環(huán)數(shù)頻數(shù)678910甲2352327乙5502525以各人這60發(fā)子彈環(huán)數(shù)的頻率作為決賽中各發(fā)子彈環(huán)數(shù)發(fā)生的概率,甲乙兩人射擊互不影響(1)求甲運(yùn)動(dòng)員在決賽中前2發(fā)子彈共打出1次10環(huán)的概率;(2)決賽打完第9發(fā)子彈后,甲比乙落后2環(huán),求最終甲能戰(zhàn)勝乙(甲環(huán)數(shù)大于乙環(huán)數(shù))的概率

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】利用空間向量運(yùn)算求得正確答案.【詳解】.故選:B2、B【解析】由幾何概型公式求解即可.【詳解】紅燈持續(xù)時(shí)間為40秒,則至少需要等待18秒才出現(xiàn)綠燈的概率為,故選:B3、B【解析】由題意判斷橢圓焦點(diǎn)在軸上,則,解方程即可確定的值.【詳解】有題意知:焦點(diǎn)在軸上,則,從而,解得:.故選:B.4、B【解析】由交集定義直接求解即可.【詳解】集合,,則.故選B.【點(diǎn)睛】本題主要考查了集合的交集運(yùn)算,屬于基礎(chǔ)題.5、C【解析】根據(jù)兩點(diǎn)的坐標(biāo)和直線的兩點(diǎn)式方程計(jì)算化簡即可.【詳解】由直線的兩點(diǎn)式方程可得,直線l的方程為,即故選:C6、B【解析】作出線面角構(gòu)造三角形直接求解,建立空間直角坐標(biāo)系用向量法求解.【詳解】設(shè)正方體棱長為2,、F分別為AB、CD的中點(diǎn),由正方體性質(zhì)知平面,所以平面平面,在平面作,則平面,因?yàn)?,所以即為所求角,所?故選:B7、B【解析】根據(jù)等差數(shù)列通項(xiàng)公式及求和公式的基本量計(jì)算,對比即可得出結(jié)果.【詳解】設(shè)等差數(shù)列{an}的公差為,,,,即,即.當(dāng),時(shí),①③④均成立,②不成立.故選:B8、A【解析】由等比數(shù)列的性質(zhì)有,結(jié)合已知求出基本量,再由即可得答案.【詳解】因?yàn)椋?,且q為整數(shù),所以,,即q=2.所以.故選:A9、D【解析】設(shè)出直線方程,聯(lián)立拋物線方程,利用韋達(dá)定理,求得,根據(jù)其結(jié)果即可判斷和選擇.【詳解】為說明問題,不妨設(shè)拋物線方程,則,直線斜率顯然不為零,故可設(shè)直線方程為,聯(lián)立,可得,設(shè)坐標(biāo)為,則,故,當(dāng)時(shí),,;當(dāng)時(shí),,;故為銳角或直角.故選:D.10、C【解析】由題可知甲不在前2名,乙不在最后一名,然后分類討論可得答案.【詳解】若甲是最后一名,則其他三人沒有限制,4人排名即為,若甲是第三名,4人的排名為,所以4人的排名有種情況.故選:C11、C【解析】由題意得,直線被圓截得的弦長等于半徑.圓的圓心坐標(biāo),設(shè)圓半徑為,圓心到直線的距離為,則由條件得,整理得所以,解得.選C12、A【解析】根據(jù)充分、必要條件間的推出關(guān)系,判斷“x>1”與“x>0”的關(guān)系.【詳解】“x>1”,則“x>0”,反之不成立.∴“x>1”是“x>0”的充分不必要條件.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先求出正方形的面積,然后求出動(dòng)點(diǎn)到點(diǎn)的距離所表示的平面區(qū)域的面積,最后根據(jù)幾何概型計(jì)算公式求出概率.【詳解】正方形的面積為,如下圖所示:陰影部分的面積為:,在正方形內(nèi),陰影外面部分的面積為,則在該正方形區(qū)域內(nèi)隨機(jī)取一個(gè)點(diǎn),則此點(diǎn)到點(diǎn)的距離大于的概率是.【點(diǎn)睛】本題考查了幾何概型的計(jì)算公式,正確求出陰影部分的面積是解題的關(guān)鍵.14、【解析】直接利用等差數(shù)列前項(xiàng)和公式和等差數(shù)列的性質(zhì)求解即可.【詳解】由已知條件得,故答案為:.15、【解析】根據(jù)導(dǎo)數(shù)的定義直接計(jì)算即可【詳解】因?yàn)?,所以,故答案為?6、6【解析】根據(jù)函數(shù)在處有極值2,可得,解方程組即可得解.【詳解】解:,因?yàn)楹瘮?shù)在處有極值2,所以,即,解得,則,故當(dāng)時(shí),,當(dāng)時(shí),,所以函數(shù)在處有極大值,所以,所以.故答案為:6.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)當(dāng)時(shí),上單調(diào)遞增;當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增;當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增.(2)【解析】(1)先求函數(shù)的定義域,再求導(dǎo),根據(jù)導(dǎo)數(shù)即可求出函數(shù)的單調(diào)區(qū)間;(2)根據(jù)(1)的結(jié)論,分別求時(shí)的最小值,令,即可求出實(shí)數(shù)的取值范圍.【小問1詳解】易知函數(shù)的定義域?yàn)?,,?dāng)時(shí),,所以在上單調(diào)遞增;當(dāng)時(shí),,令,得;令,得,所以在上單調(diào)遞減,在上單調(diào)遞增;當(dāng)時(shí),,令,得;令,得,所以在上單調(diào)遞減,在上單調(diào)遞增.【小問2詳解】當(dāng)時(shí),成立,所以符合題意;當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增,要使恒成立,則,解得;當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增,要使恒成立,則,解得.綜上所述,實(shí)數(shù)的取值范圍是.18、(1)證明見解析(2)【解析】(1)證明垂直于平面BED內(nèi)的兩條相交直線,即可得到答案;(2)分別以O(shè)B,OC,OE為x軸,y軸,z軸,建立直角坐標(biāo)系,平面FAC的一個(gè)法向量為,代入向量的夾角公式,即可得到答案;【小問1詳解】∵ABCD為菱形,∴,設(shè)AC與BD的交點(diǎn)為O,則OE為的中位線,∴.由題意得平面ABCD,∴平面ABCD,而AC平面ABCD中,∴.又,∴平面BED.小問2詳解】∵ABCD為菱形,,∴為正三角形,∴.∵平面ABCD,∴與平面ABCD所成角,由,得,所以.如圖,分別以O(shè)B,OC,OE為x軸,y軸,z軸,建立直角坐標(biāo)系,則,,,,,,,設(shè)平面FAC的法向量為,則由可得,取,故可得平面FAC的一個(gè)法向量為,記直線與平面FAC的夾角為,則19、(1);(2),.【解析】(1)由的最小值為1,得到,再由,結(jié)合,求得的值,即可求得橢圓的方程.(2)設(shè)切線的方程為,聯(lián)立方程組,根據(jù)直線與橢圓相切,求得,結(jié)合點(diǎn)到直線的距離公式和圓的弦長公式,求得的面積的表示,結(jié)合函數(shù)的單調(diào)性,即可求解.【詳解】(1)由題意,點(diǎn)橢圓上的一動(dòng)點(diǎn),且的最小值是1,得,因?yàn)楫?dāng)垂直長軸時(shí),可得,所以,即,又由,解得,所以橢圓的標(biāo)準(zhǔn)方程為.(2)由題意知切線的斜率一定存在,否則不能形成,設(shè)切線的方程為,聯(lián)立,整理得,因?yàn)橹本€與橢圓相切,所以,化簡得,則,因?yàn)辄c(diǎn)到直線的距離,所以,即,故的面積為,因?yàn)?,可得,即,函?shù)在上單調(diào)遞增,所以,當(dāng)時(shí)取等號,則,即面積的最大值為.當(dāng)時(shí),此時(shí),所以直線的方程為.【點(diǎn)睛】對于直線與橢圓的位置關(guān)系的處理方法:1、判定與應(yīng)用直線與橢圓的位置關(guān)系,一把轉(zhuǎn)化為研究直線方程與橢圓組成的方程組的解得個(gè)數(shù),結(jié)合判別式求解;2、對于過定點(diǎn)的直線,也可以通過定點(diǎn)在橢圓的內(nèi)部或在橢圓上,判定直線與橢圓的位置關(guān)系.20、(1);(2)或【解析】(1)根據(jù)橢圓的焦距為2,離心率為,求出,,即可求橢圓的方程;(2)設(shè)直線方程為,代入橢圓方程,由得,利用韋達(dá)定理,化簡可得,求出,即可求直線的方程.試題解析:(1)設(shè)橢圓方程為,因?yàn)?,所以,所求橢圓方程為.(2)由題得直線l的斜率存在,設(shè)直線l方程為y=kx+1,則由得,且.設(shè),則由得,又,所以消去得,解得,,所以直線的方程為,即或.21、(1)(2)0【解析】(1)由條件得和,再結(jié)合可求解;(2)設(shè)直線AB的方程為:,與橢圓聯(lián)立,得到,同理得,再根據(jù)題中的條件化簡整理可求解.【小問1詳解】因?yàn)闄E圓的離心率為,所以,所以①又因?yàn)檫^且垂直于x軸的直線被橢圓C截得的線段長為1,所以②,由①②可知,所以,,所以橢圓C的方程為【小問2詳解】因?yàn)辄c(diǎn)P在直線上,所以設(shè)點(diǎn),由題可知,直線AB的斜率與直線MN的斜率都存在所以直線AB的方程為:,即,直線MN的方程為:,即,設(shè),,,,所以,消去y可得,,整理可得,且所以,,又因?yàn)椋?,所以,同理可得,又因?yàn)?,所以,又因?yàn)?,,,都是長度,所以,所以,整理可得,又因?yàn)?,所以,所以直線AB的斜率與直線MN的斜率之和為022、(1)(2)【解析】(1)先求出甲運(yùn)動(dòng)員打中10環(huán)的概率,從而可求出甲運(yùn)動(dòng)員在決賽中前2發(fā)子彈共打出1次1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論