數學蘇教七年級下冊期末解答題壓軸真題模擬試卷名校_第1頁
數學蘇教七年級下冊期末解答題壓軸真題模擬試卷名校_第2頁
數學蘇教七年級下冊期末解答題壓軸真題模擬試卷名校_第3頁
數學蘇教七年級下冊期末解答題壓軸真題模擬試卷名校_第4頁
數學蘇教七年級下冊期末解答題壓軸真題模擬試卷名校_第5頁
已閱讀5頁,還剩18頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

數學蘇教七年級下冊期末解答題壓軸真題模擬試卷精選名校一、解答題1.在△ABC中,射線AG平分∠BAC交BC于點G,點D在BC邊上運動(不與點G重合),過點D作DE∥AC交AB于點E.(1)如圖1,點D在線段CG上運動時,DF平分∠EDB①若∠BAC=100°,∠C=30°,則∠AFD=;若∠B=40°,則∠AFD=;②試探究∠AFD與∠B之間的數量關系?請說明理由;(2)點D在線段BG上運動時,∠BDE的角平分線所在直線與射線AG交于點F試探究∠AFD與∠B之間的數量關系,并說明理由2.在△ABC中,∠BAC=90°,點D是BC上一點,將△ABD沿AD翻折后得到△AED,邊AE交BC于點F.(1)如圖①,當AE⊥BC時,寫出圖中所有與∠B相等的角:;所有與∠C相等的角:.(2)若∠C-∠B=50°,∠BAD=x°(0<x≤45).①求∠B的度數;②是否存在這樣的x的值,使得△DEF中有兩個角相等.若存在,并求x的值;若不存在,請說明理由.3.小明在學習過程中,對教材中的一個有趣問題做如下探究:(習題回顧)已知:如圖1,在中,,是角平分線,是高,、相交于點.求證:;(變式思考)如圖2,在中,,是邊上的高,若的外角的平分線交的延長線于點,其反向延長線與邊的延長線交于點,則與還相等嗎?說明理由;(探究延伸)如圖3,在中,上存在一點,使得,的平分線交于點.的外角的平分線所在直線與的延長線交于點.直接寫出與的數量關系.4.如圖,已知直線a∥b,∠ABC=100°,BD平分∠ABC交直線a于點D,線段EF在線段AB的左側,線段EF沿射線AD的方向平移,在平移的過程中BD所在的直線與EF所在的直線交于點P.問∠1的度數與∠EPB的度數又怎樣的關系?(特殊化)(1)當∠1=40°,交點P在直線a、直線b之間,求∠EPB的度數;(2)當∠1=70°,求∠EPB的度數;(一般化)(3)當∠1=n°,求∠EPB的度數(直接用含n的代數式表示).5.已知在中,,點在上,邊在上,在中,邊在直線上,;(1)如圖1,求的度數;(2)如圖2,將沿射線的方向平移,當點在上時,求度數;(3)將在直線上平移,當以為頂點的三角形是直角三角形時,直接寫出度數.6.已知:∠MON=36°,OE平分∠MON,點A,B分別是射線OM,OE,上的動點(A,B不與點O重合),點D是線段OB上的動點,連接AD并延長交射線ON于點C,設∠OAC=x,(1)如圖1,若AB∥ON,則①∠ABO的度數是______;②當∠BAD=∠ABD時,x=______;當∠BAD=∠BDA時,x=______;(2)如圖2,若AB⊥OM,則是否存在這樣的x的值,使得△ABD中有兩個相等的角?若存在,求出x的值;若不存在,請說明理由.7.如圖,,點在直線上,點在直線和之間,,平分.(1)求的度數(用含的式子表示);(2)過點作交的延長線于點,作的平分線交于點,請在備用圖中補全圖形,猜想與的位置關系,并證明;(3)將(2)中的“作的平分線交于點”改為“作射線將分為兩個部分,交于點”,其余條件不變,連接,若恰好平分,請直接寫出__________(用含的式子表示).8.如圖1,已知,是直線,外的一點,于點,交于點,滿足.(1)求的度數;(2)如圖2,射線從出發(fā),以每秒的速度繞點按逆時針方向勻速旋轉,當到達時立刻返回至,然后繼續(xù)按上述方式旋轉;射線從出發(fā),以相同的速度繞點按順時針方向旋轉至后停止運動,此時射線也停止運動.若射線、射線同時開始運動,設運動時間為秒.①當射線平分時,求的度數;②當直線與直線相交所成的銳角是時,則________.9.(1)證明:兩條平行線被第三條直線所截,一對同旁內角的角平分線互相垂直.已知:如圖,AB∥CD,.求證:.證明:(2)如圖,AB∥CD,點E、F分別在直線AB、CD上,EM∥FN,∠AEM與∠CFN的角平分線相交于點O.求證:EO⊥FO.(3)如圖,AB∥CD,點E、F分別在直線AB、CD上,EM∥PN,MP∥NF,∠AEM與∠CFN的角平分線相交于點O,∠P=102°,求∠O的度數.10.認真閱讀下面關于三角形內外角平分線所夾角的探究片段,完成所提出的問題.(探究1):如圖1,在ΔABC中,O是∠ABC與∠ACB的平分線BO和CO的交點,通過分析發(fā)現∠BOC=90o+∠A,(請補齊空白處)理由如下:∵BO和CO分別是∠ABC和∠ACB的角平分線,∴∠1=∠ABC,_________________,在ΔABC中,∠A+∠ABC+∠ACB=180o.∴∠1+∠2=(∠ABC+∠ACB)=(180o-∠A)=90o-∠A,∴∠BOC=180o-(∠1+∠2)=180o-(________)=90o+∠A.(探究2):如圖2,已知O是外角∠DBC與外角∠ECB的平分線BO和CO的交點,則∠BOC與∠A有怎樣的關系?請說明理由.(應用):如圖3,在RtΔAOB中,∠AOB=90o,已知AB不平行與CD,AC、BD分別是∠BAO和∠ABO的角平分線,又CE、DE分別是∠ACD和∠BDC的角平分線,則∠E=_______;(拓展):如圖4,直線MN與直線PQ相交于O,∠MOQ=60o,點A在射線OP上運動,點B在射線OM上運動,延長BA至G,已知∠BAO、∠OAG的角平分線與∠BOQ的角平分線及其延長線交于E、F,在ΔAEF中,如果有一個角是另一個角的4倍,則∠ABO=______.【參考答案】一、解答題1.(1)①115°;110°;②;理由見解析;(2);理由見解析【分析】(1)①若∠BAC=100°,∠C=30°,由三角形內角和定理求出∠B=50°,由平行線的性質得出∠EDB=∠C=30°,由解析:(1)①115°;110°;②;理由見解析;(2);理由見解析【分析】(1)①若∠BAC=100°,∠C=30°,由三角形內角和定理求出∠B=50°,由平行線的性質得出∠EDB=∠C=30°,由角平分線定義得出,,由三角形的外角性質得出∠DGF=100°,再由三角形的外角性質即可得出結果;若∠B=40°,則∠BAC+∠C=180°-40°=140°,由角平分線定義得出,,由三角形的外角性質即可得出結果;②由①得:∠EDB=∠C,,,由三角形的外角性質得出∠DGF=∠B+∠BAG,再由三角形的外角性質即可得出結論;(2)由(1)得:∠EDB=∠C,,,由三角形的外角性質和三角形內角和定理即可得出結論.【詳解】(1)①若∠BAC=100°,∠C=30°,則∠B=180°-100°-30°=50°,∵DE∥AC,∴∠EDB=∠C=30°,∵AG平分∠BAC,DF平分∠EDB,∴,,∴∠DGF=∠B+∠BAG=50°+50°=100°,∴∠AFD=∠DGF+∠FDG=100°+15°=115°;若∠B=40°,則∠BAC+∠C=180°-40°=140°,∵AG平分∠BAC,DF平分∠EDB,∴,,∵∠DGF=∠B+∠BAG,∴∠AFD=∠DGF+∠FDG=∠B+∠BAG+∠FDG=故答案為:115°;110°;②;理由如下:由①得:∠EDB=∠C,,,∵∠DGF=∠B+∠BAG,∴∠AFD=∠DGF+∠FDG=∠B+∠BAG+∠FDG=;(2)如圖2所示:;理由如下:由(1)得:∠EDB=∠C,,,∵∠AHF=∠B+∠BDH,∴∠AFD=180°-∠BAG-∠AHF.【點睛】本題考查了三角形內角和定理、三角形的外角性質、平行線的性質等知識;熟練掌握三角形內角和定理和三角形的外角性質是解題的關鍵.2.(1)∠E、∠CAF;∠CDE、∠BAF;(2)①20°;②30【分析】(1)由翻折的性質和平行線的性質即可得與∠B相等的角;由等角代換即可得與∠C相等的角;(2)①由三角形內角和定理可得,解析:(1)∠E、∠CAF;∠CDE、∠BAF;(2)①20°;②30【分析】(1)由翻折的性質和平行線的性質即可得與∠B相等的角;由等角代換即可得與∠C相等的角;(2)①由三角形內角和定理可得,再由根據角的和差計算即可得∠C的度數,進而得∠B的度數.②根據翻折的性質和三角形外角及三角形內角和定理,用含x的代數式表示出∠FDE、∠DFE的度數,分三種情況討論求出符合題意的x值即可.【詳解】(1)由翻折的性質可得:∠E=∠B,∵∠BAC=90°,AE⊥BC,∴∠DFE=90°,∴180°-∠BAC=180°-∠DFE=90°,即:∠B+∠C=∠E+∠FDE=90°,∴∠C=∠FDE,∴AC∥DE,∴∠CAF=∠E,∴∠CAF=∠E=∠B故與∠B相等的角有∠CAF和∠E;∵∠BAC=90°,AE⊥BC,∴∠BAF+∠CAF=90°,∠CFA=180°-(∠CAF+∠C)=90°∴∠BAF+∠CAF=∠CAF+∠C=90°∴∠BAF=∠C又AC∥DE,∴∠C=∠CDE,∴故與∠C相等的角有∠CDE、∠BAF;(2)①∵∴又∵,∴∠C=70°,∠B=20°;②∵∠BAD=x°,∠B=20°則,,由翻折可知:∵,,∴,,當∠FDE=∠DFE時,,解得:;當∠FDE=∠E時,,解得:(因為0<x≤45,故舍去);當∠DFE=∠E時,,解得:(因為0<x≤45,故舍去);綜上所述,存在這樣的x的值,使得△DEF中有兩個角相等.且.【點睛】本題考查圖形的翻折、三角形內角和定理、平行線的判定及其性質、三角形外角的性質、等角代換,解題的關鍵是熟知圖形翻折的性質及綜合運用所學知識.3.[習題回顧]證明見解析;[變式思考]相等,證明見解析;[探究延伸]∠M+∠CFE=90°,證明見解析.【分析】[習題回顧]根據同角的余角相等可證明∠B=∠ACD,再根據三角形的外角的性質即可解析:[習題回顧]證明見解析;[變式思考]相等,證明見解析;[探究延伸]∠M+∠CFE=90°,證明見解析.【分析】[習題回顧]根據同角的余角相等可證明∠B=∠ACD,再根據三角形的外角的性質即可證明;[變式思考]根據角平分線的定義和對頂角相等可得∠CAE=∠DAF、再根據直角三角形的性質和等角的余角相等即可得出=;[探究延伸]根據角平分線的定義可得∠EAN=90°,根據直角三角形兩銳角互余可得∠M+∠CEF=90°,再根據三角形外角的性質可得∠CEF=∠CFE,由此可證∠M+∠CFE=90°.【詳解】[習題回顧]證明:∵∠ACB=90°,CD是高,∴∠B+∠CAB=90°,∠ACD+∠CAB=90°,∴∠B=∠ACD,∵AE是角平分線,∴∠CAF=∠DAF,∵∠CFE=∠CAF+∠ACD,∠CEF=∠DAF+∠B,∴∠CEF=∠CFE;[變式思考]相等,理由如下:證明:∵AF為∠BAG的角平分線,∴∠GAF=∠DAF,∵∠CAE=∠GAF,∴∠CAE=∠DAF,∵CD為AB邊上的高,∠ACB=90°,∴∠ADC=90°,∴∠ADF=∠ACE=90°,∴∠DAF+∠F=90°,∠E+∠CAE=90°,∴∠CEF=∠CFE;[探究延伸]∠M+∠CFE=90°,證明:∵C、A、G三點共線

AE、AN為角平分線,∴∠EAN=90°,又∵∠GAN=∠CAM,∴∠M+∠CEF=90°,∵∠CEF=∠EAB+∠B,∠CFE=∠EAC+∠ACD,∠ACD=∠B,∴∠CEF=∠CFE,∴∠M+∠CFE=90°.【點睛】本題考查三角形的外角的性質,直角三角形兩銳角互余,角平分線的有關證明,等角或同角的余角相等.在本題中用的比較多的是利用等角或同角的余角相等證明角相等和三角形一個外角等于與它不相鄰的兩個內角之和,理解并掌握是解決此題的關鍵.4.(1)∠EPB=170°;(2)①當交點P在直線b的下方時:∠EPB=20°,②當交點P在直線a,b之間時:∠EPB=160°,③當交點P在直線a的上方時:∠EPB=∠1﹣50°=20°;(3)①當解析:(1)∠EPB=170°;(2)①當交點P在直線b的下方時:∠EPB=20°,②當交點P在直線a,b之間時:∠EPB=160°,③當交點P在直線a的上方時:∠EPB=∠1﹣50°=20°;(3)①當交點P在直線a,b之間時:∠EPB=180°﹣|n°﹣50°|;②當交點P在直線a上方或直線b下方時:∠EPB=|n°﹣50°|.【分析】(1)利用外角和角平分線的性質直接可求解;(2)分三種情況討論:①當交點P在直線b的下方時;②當交點P在直線a,b之間時;③當交點P在直線a的上方時;分別畫出圖形求解;(3)結合(2)的探究,分兩種情況得到結論:①當交點P在直線a,b之間時;②當交點P在直線a上方或直線b下方時;【詳解】解:(1)∵BD平分∠ABC,∴∠ABD=∠DBC=∠ABC=50°,∵∠EPB是△PFB的外角,∴∠EPB=∠PFB+∠PBF=∠1+(180°﹣50°)=170°;(2)①當交點P在直線b的下方時:∠EPB=∠1﹣50°=20°;②當交點P在直線a,b之間時:∠EPB=50°+(180°﹣∠1)=160°;③當交點P在直線a的上方時:∠EPB=∠1﹣50°=20°;(3)①當交點P在直線a,b之間時:∠EPB=180°﹣|n°﹣50°|;②當交點P在直線a上方或直線b下方時:∠EPB=|n°﹣50°|;【點睛】考查知識點:平行線的性質;三角形外角性質.根據動點P的位置,分類畫圖,結合圖形求解是解決本題的關鍵.數形結合思想的運用是解題的突破口.5.(1)60°;(2)15°;(3)30°或15°【分析】(1)利用兩直線平行,同旁內角互補,得出,即可得出結論;(2)先利用三角形的內角和定理求出,即可得出結論;(3)分和兩種情況求解即可得解析:(1)60°;(2)15°;(3)30°或15°【分析】(1)利用兩直線平行,同旁內角互補,得出,即可得出結論;(2)先利用三角形的內角和定理求出,即可得出結論;(3)分和兩種情況求解即可得出結論.【詳解】解:(1),,,,,;(2)由(1)知,,,,,;(3)當時,如圖3,由(1)知,,;當時,如圖4,,點,重合,,,由(1)知,,,即當以、、為頂點的三角形是直角三角形時,度數為或.【點睛】此題是三角形綜合題,主要考查了平行線的性質,三角形的內角和定理,角的和差的計算,求出是解本題的關鍵.6.(1)①18°;②126°;③63°;(2)當x=18、36、54時,△ADB中有兩個相等的角.【分析】(1)運用平行線的性質以及角平分線的定義,可得∠ABO的度數;根據∠ABO、∠BAD的度數解析:(1)①18°;②126°;③63°;(2)當x=18、36、54時,△ADB中有兩個相等的角.【分析】(1)運用平行線的性質以及角平分線的定義,可得∠ABO的度數;根據∠ABO、∠BAD的度數以及△AOB的內角和,可得x的值;(2)根據三角形內角和定理以及直角的度數,可得x的值.【詳解】解:(1)如圖1,①∵∠MON=36°,OE平分∠MON,∴∠AOB=∠BON=18°,∵AB∥ON,∴∠ABO=18°;②當∠BAD=∠ABD時,∠BAD=18°,∵∠AOB+∠ABO+∠OAB=180°,∴∠OAC=180°-18°×3=126°;③當∠BAD=∠BDA時,∵∠ABO=18°,∴∠BAD=81°,∠AOB=18°,∵∠AOB+∠ABO+∠OAB=180°,∴∠OAC=180°-18°-18°-81°=63°,故答案為①18°;②126°;③63°;(2)如圖2,存在這樣的x的值,使得△ADB中有兩個相等的角.∵AB⊥OM,∠MON=36°,OE平分∠MON,∴∠AOB=18°,∠ABO=72°,若∠BAD=∠ABD=72°,則∠OAC=90°-72°=18°;若∠BAD=∠BDA=(180°-72°)÷2=54°,則∠OAC=90°-54°=36°;若∠ADB=∠ABD=72°,則∠BAD=36°,故∠OAC=90°-36°=54°;綜上所述,當x=18、36、54時,△ADB中有兩個相等的角.【點睛】本題考查了三角形的內角和定理和三角形的外角性質的應用,三角形的內角和等于180°,三角形的一個外角等于和它不相鄰的兩個內角之和.利用角平分線的性質求出∠ABO的度數是關鍵,注意分類討論思想的運用.7.(1);(2)畫圖見解析,,證明見解析;(3)或【分析】(1)根據平行線的傳遞性推出,再利用平行線的性質進行求解;(2)猜測,根據平分,推導出,再根據、平分,通過等量代換求解;(3)分兩種情解析:(1);(2)畫圖見解析,,證明見解析;(3)或【分析】(1)根據平行線的傳遞性推出,再利用平行線的性質進行求解;(2)猜測,根據平分,推導出,再根據、平分,通過等量代換求解;(3)分兩種情況進行討論,即當與,充分利用平行線的性質、角平分線的性質、等量代換的思想進行求解.【詳解】(1)過點作,,,,.(2)根據題意,補全圖形如下:猜測,由(1)可知:,平分,,,,,又平分,,,.(3)①如圖1,,由(2)可知:,,,,,,,,,,又平分,,;②如圖2,,(同①);若,則有,又,,,,綜上所述:或,故答案是:或.【點睛】本題考查了平行線的性質、角平分線、三角形內角和定理、垂直等相關知識點,解題的關鍵是掌握相關知識點,作出適當的輔助線,通過分類討論及等量代換進行求解.8.(1);(2)①;②.【分析】(1)根據,,可以得到,即,再根據三角形外角定理求解即可.(2)①射線平分時,可知此時,根據題意可以確定運動時間t=3s或t=9s,從而計算的度數即可;②用含t的解析:(1);(2)①;②.【分析】(1)根據,,可以得到,即,再根據三角形外角定理求解即可.(2)①射線平分時,可知此時,根據題意可以確定運動時間t=3s或t=9s,從而計算的度數即可;②用含t的代數式表示出所成的角度,然后進行動態(tài)分析求解即可.【詳解】解(1)∵,∴∴又∵∴(2)①∵射線平分∴∵射線從出發(fā),以相同的速度繞點按順時針方向旋轉至后停止運動,此時射線也停止運動,∴運動的總時間∵射線從出發(fā),以每秒的速度繞點按逆時針方向勻速旋轉,當到達時立刻返回至,然后繼續(xù)按上述方式旋轉∴第一次,,第二次時,,第三次時,以此類推故當第一次,∴故第二次時,∴故第三次時,∴∵∴②如圖所示直線與直線相交所成的銳角是∴∵,,∴∴又∵∴第一種情況,當時∴當時解得當解得第二種情況,當∴此時t無解,第三種情況當同理可以計算出,綜上所述:【點睛】本題主要考查了三角形內角和定理,解題的關鍵在于能夠正確的分析動態(tài)過程.9.(1)直線MN分別交直線AB、CD于點E、F,∠AEF和∠CFE的角平分線OE、OF交于點O,OE⊥OF,見解析;(2)見解析;(3)51°.【分析】(1)根據平行線的性質和角平分線定義即可證解析:(1)直線MN分別交直線AB、CD于點E、F,∠AEF和∠CFE的角平分線OE、OF交于點O,OE⊥OF,見解析;(2)見解析;(3)51°.【分析】(1)根據平行線的性質和角平分線定義即可證明;(2)延長交于點,過點作交于點,結合(1)的方法即可證明;(3)延長、交于點,過點作交于點.結合(1)的方法可得,再根據角平分線定義即可求出結果.【詳解】(1)已知:如圖①,,直線分別交直線,于點,,、分別平分、,求證:;證法,,、分別平分、,.,.;證法2:如圖,過點作交直線于點.,,、分別平分、,.,,..;故答案為:直線分別交直線,于點,,、分別平分、,;(2)證明:如圖,延長交于點,過點作交于點,,,,.、分別平分、,,,,..;(3)解:如圖,延長、交于點,過點作交于點.,,,由(1)證法2可知,、分別平分、,.【點睛】本題考查了平行線的判定與性質,角平分線的定義,解決本題的關鍵是掌握平行線的判定與性質.10.【探究1】∠2=∠ACB,90o-∠A;【探究2】∠BOC=90°﹣∠A,理由見解析;【應用】22.5°;【拓展】45°或36°.【分析】【探究1】根據角平分線的定義可得∠1=∠ABC,∠2=∠解析:【探究1】∠2=∠ACB,90o-∠A;【探究2】∠BOC=90°﹣∠A,理由見解析;【應用】22.5°;【拓展】45°或36°.【分析】【探究1】根據角平分線的定義可得∠1=∠ABC,∠2=∠ACB,根據三角形的內角和定理可得∠1+∠2=90o-∠A,再根據三角形的內角和定理即可得出結論;【探究2】如圖2,由三角形的外角性質和角平分線的定義可得∠OBC=(∠A+∠ACB),∠OCB=(∠A+∠ABC),然后再根據三角形的內角和定理即可得出結論;【應用】延長AC與BD,設交點為G,如圖5,由【探究1】的結論可得∠G的度數,于是可得∠GCD+∠GDC的度數,然后根據角平分線的定義和角的和差可得∠1+∠2的度數,再根據三角形的內角和定理即可求出結果;【拓展】根據角平分線的定義和平角的定義可得∠EAF=90°,然后分三種情況討論:若∠EAF=4∠E,則∠E=22.5°,根據角平分線的定義和三角形的外角性質可得∠ABO=2∠E,于是可

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論