![《高職應用數學》教案 第10課 導數的概念_第1頁](http://file4.renrendoc.com/view/f04877b2e5bf9ea3684e419d107928f2/f04877b2e5bf9ea3684e419d107928f21.gif)
![《高職應用數學》教案 第10課 導數的概念_第2頁](http://file4.renrendoc.com/view/f04877b2e5bf9ea3684e419d107928f2/f04877b2e5bf9ea3684e419d107928f22.gif)
![《高職應用數學》教案 第10課 導數的概念_第3頁](http://file4.renrendoc.com/view/f04877b2e5bf9ea3684e419d107928f2/f04877b2e5bf9ea3684e419d107928f23.gif)
![《高職應用數學》教案 第10課 導數的概念_第4頁](http://file4.renrendoc.com/view/f04877b2e5bf9ea3684e419d107928f2/f04877b2e5bf9ea3684e419d107928f24.gif)
![《高職應用數學》教案 第10課 導數的概念_第5頁](http://file4.renrendoc.com/view/f04877b2e5bf9ea3684e419d107928f2/f04877b2e5bf9ea3684e419d107928f25.gif)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
第10課導數的概念課題導數的概念課時2課時(90min)教學目標(三維目標:知識與技能,過程與方法,情感價值觀)1.理解導數的概念2.利用導數定義求導數,會通過導數定義計算簡單函數的導數3.掌握用導數表示變化率的方法4.理解函數的可導性與連續(xù)性的關系思政育人目標:引導學生從生活中發(fā)現(xiàn)數學并一步步的探索,感受成功的樂趣,增強學生的自信心;引導學生養(yǎng)成獨立思考和深度思考的良好習慣;培養(yǎng)學生的邏輯思維、辯證思維和創(chuàng)新思維能力;樹立學生實事求是、一絲不茍的科學精神教學重難點教學重點:導數的概念教學難點:函數可導性與連續(xù)性的關系教學方法講授法、問答法、討論法、演示法、實踐法教學用具電腦、投影儀、多媒體課件、教材教學設計第一節(jié)課:課前任務→考勤(2min)→復習(10min)→引例分析(10min)→講授新課(23min)第二節(jié)課:講授新課(20min)→課堂測驗(10min)→課堂指導(12min)→課堂小結(3min)→課后拓展教學過程主要教學內容及步驟設計意圖第一節(jié)課課前任務【教師】和學生負責人取得聯(lián)系,布置課前任務,提醒同學做完作業(yè),在指定時間內交齊【學生】做完作業(yè),在指定時間內交齊【教師】通過文旌課堂APP或其他學習軟件,布置課前問答題:(1)微分學是研究什么的?(2)導數是因為哪些實際問題產生的?(3)什么是導數?(4)導數和連續(xù)的關系?【學生】查找資料,預習教材通過課前的預熱,讓學生了解所學科目的大概方向,激發(fā)學生的學習欲望考勤(2min)【教師】清點上課人數,記錄好考勤【學生】班干部報請假人員及原因培養(yǎng)學生的組織紀律性,掌握學生的出勤情況復習(10min)【教師】提前設計好上節(jié)課的復習題目,并針對學生存在的問題及時講解【學生】做復習題目復習上節(jié)課所學內容,為講授新課打好基礎引例分析(10min)【教師】由引例體現(xiàn)導數在實際問題中的應用圖3-1引例自由落體的瞬時速度圖3-1如圖3-1所示是著名的伽利略自由落體實驗的場景.若物體在真空中自由下落,則它的運動方程為,其中為常量.試求物體在時刻的瞬時速度.分析我們知道,當物體做勻速直線運動時,它在任意時刻的速度可用公式來計算.但這里物體是變速直線運動,上式中的速度只能反映物體在某段時間內的平均速度,而不能精確地描述運動過程中任意時刻的瞬時速度.因此,求物體在時刻的瞬時速度,需要采用新的方法.下面我們用求極限的方法來解決這個問題.如圖3-2所示,給定時間變量在時的一個增量,則在從時刻到這段時間間隔內,物體運動路程的增量為圖3-2圖3-2從而求得物體在時間段內的平均速度,即顯然,當無限變小時,平均速度無限接近于物體在時刻的瞬時速度.因此,平均速度的極限值就是物體在時刻的瞬時速度,即可定義.可以看到,上述定義與物理學中自由落體的瞬時速度公式是一致的.從數學觀點看,以上引例中求自由落體瞬時速度的實質就是求函數在某一點處的增量與其自變量的增量之比的極限.在實際中,許多問題都可以歸結為這樣一種求增量比的極限問題.在數學上,我們把這類問題定義為導數.【學生】了解導數在現(xiàn)實中的應用通過引例使學生了解導數在現(xiàn)實中的應用,體會到數學是源于生活的,是對實際問題的抽象產生的,數學學科不是脫離我們實際生活的,所以要好好學習數學講授新課(23min)【教師】講解導數的定義定義1設函數在點處及其左右近旁有定義,當自變量在點處有增量時,相應地函數有增量.若當時,與之比的極限存在,則稱函數在點處可導,并稱此極限值為在點處的導數,記作,,或,于是有.若上式的極限不存在,則稱函數在點處不可導(或導數不存在).定義2若函數在區(qū)間內每一點都可導,則稱在區(qū)間內可導.這時,對于任意一個,都有一個確定的導數值與之對應,這樣就構成了一個新函數,稱為函數的導函數,簡稱導數,即,也可記作,,.【教師】通過例題介紹利用導數定義求導數的方法,并推導出導數公式由導數定義可知,求函數的導數可按以下三個步驟進行:(1)求函數增量:;(2)計算比值:;(3)求極限:.例1求函數(為常數)的導數.例1解因為為常數,所以,即.例2求函數的導數.例2解由已知可得,于是,因此,即.用同樣的方法可以求.同理,可以推出冪函數的求導公式:(為任意實數).例3求下列函數的導數例3(1); (2).解(1).(2).例4求函數的導數.例4解,即.用同樣的方法可以求.同理,根據導數定義,我們可推出如下公式..特別地,..特別地,.例5求下列函數在指定點處的導數例5(1); (2).解(1),.(2),.【學生】理解導數的定義,按照步驟,應用導數的定義求導數,進而推導導數公式學習導數的定義和運用導數定義求導數的方法。邊做邊講,及時鞏固練習,實現(xiàn)教學做一體化第二節(jié)課講授新課(20min)【教師】通過實際案例介紹用導數表示變化率的方法,并通過例題引導學生理解導數的幾何意義和物理意義數學上的導數概念,在各個領域的實際問題中,表示的是各種各樣的變化率問題.為了更深刻地理解變化率,掌握用導數表示變化率的方法,下面給出幾個應用案例.案例1案例1設曲線在點處有切線且斜率存在,求曲線在點處的切線斜率.在曲線上另取一點,設它的坐標為,如圖3-3所示.當割線上的點沿著曲線無限接近點時,割線的極限位置稱為曲線在點的切線.設割線的傾角為,切線的傾角為,則割線的斜率為.圖3-3顯然,當時,即點沿著曲線趨近于點時,割線趨近于極限位置(即切線).于是得到切線的斜率為.這就是說,函數在點處的導數在幾何上表示曲線在點處切線的斜率.由直線的點斜式方程可以得到如下兩點.(1)曲線在點處的切線方程為.(2)過切點且與切線垂直的直線稱為曲線在點處的法線.若,則法線斜率為,所以曲線在點處的法線方程為.例6求曲線在點處的切線斜率,并寫出該點處的切線方程和法線方程.例6解由導數的幾何意義可知,所求的切線斜率為,于是所求的切線方程為,即.所求法線的斜率為,于是所求的法線方程為,即.案例2案例2由引例可知,若物體的運動方程為,則物體在時刻的瞬時速度為.因為加速度(描述速度變化的快慢程度)是速度關于時間的變化率,所以物體在時刻的加速度為.案例3案例3電路中電荷的定向移動形成電流,通過導體橫截面的電荷量與所用時間之比稱為電流強度,簡稱電流.如果導體內的電荷隨時間變化的函數為,那么該導體在時間段內的平均電流為,在時刻的電流為.【教師】講解函數的可導性與連續(xù)性的關系,并通過例題介紹其應用定理若函數在點處可導,則函數一定在點處連續(xù).例7證明:函數在點處連續(xù),但在點處不可導.例7證明(1)因為函數是初等函數,定義域為,所以由初等函數在其定義域內每一點都連續(xù)可知,函數在點處連續(xù).(2)因為,所以當時,導數不存在.從圖3-4中可以直觀地看到:曲線在原點具有垂直于軸的切線(即軸),顯然該切線斜率不存在.圖3-4【學生】掌握用導數表示變化率的方法,理解導數的幾何意義和物理意義;理解函數的可導性與連續(xù)性的關系(可導必連續(xù),連續(xù)未必可導)學習用導數表示變化率、導數的幾何意義和物理意義,以及函數的可導性與連續(xù)性的關系。邊做邊講,及時鞏固練習,實現(xiàn)教學做一體化課堂測驗(10min)?教師在文旌課堂APP或其他學習平臺中發(fā)布測試的題目,并讓學生加入測試?!窘處煛繌慕滩呐涮最}庫中選擇幾道題目,測試一下大家的學習情況【學生】做測試題目通過測試,了解學生對知識點的掌握情況,加深學生對本節(jié)課知識的印象課堂指導(12min)?選出優(yōu)秀學生帶動、指導其他同學掌握知識點【教師】公布題目的正確答案,讓答題快且正確的同學上臺解答,為同學們做示范。如果題目比較難,無人答對則老師示范【學生】核對自己的答題情況,對比答題思路,鞏固答題技巧以學生為主體,針對學生接受能力的差異性,讓優(yōu)秀學生帶動其他學生掌握知識點課堂小結(3min)【教師】簡要總結本節(jié)課的要點本節(jié)課上大家理解了導數的概念,掌握了利用導數定義求導數的方法,還掌握了用導數表示變化率的方法,理解了函數的可導性與連續(xù)性的關系,課后要多加練習,鞏固認知【學生】總結回顧知識點【教師】布置課
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2030年中國雙軸玻璃鋼管纏繞機數據監(jiān)測研究報告
- 2025至2030年中國包銅箱數據監(jiān)測研究報告
- 2025年度辦公用品租賃服務合同模板
- 2025年度建筑外墻抗震加固設計與施工合同
- 2025年度土地整治工程土方施工合同模板
- 2025年度建材市場推廣與購銷合同
- 2025年度管道施工安全監(jiān)督與管理服務合同
- 2025年度合伙購置住宅合同范本
- 2025年度建筑工程安全防護設施設計與施工合同范本
- 2025年度海上運輸貨物損失預防與保險理賠合同
- 統(tǒng)編版語文八年級下冊第7課《大雁歸來》分層作業(yè)(原卷版+解析版)
- 2024年湖南省普通高中學業(yè)水平考試政治試卷(含答案)
- 零售企業(yè)加盟管理手冊
- 設備維保的維修流程與指導手冊
- 招標代理服務的關鍵流程與難點解析
- GB/T 5465.2-2023電氣設備用圖形符號第2部分:圖形符號
- 材料預定協(xié)議
- 2023年河北省中考數學試卷(含解析)
- 《學習的本質》讀書會活動
- 高氨血癥護理課件
- 物流營銷(第四版) 課件 胡延華 第3、4章 物流目標客戶選擇、物流服務項目開發(fā)
評論
0/150
提交評論