版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
專題3-1利用導(dǎo)數(shù)解決切線(公切線)問(wèn)題目錄TOC\o"1-1"\h\u 1題型一:“在”型求切線 1題型二:“過(guò)”型求切線 5題型三:已知切線條數(shù)求參數(shù) 9題型四:判斷切線條數(shù) 13題型五:公切線問(wèn)題 16題型六:距離最小值 19題型七:等價(jià)轉(zhuǎn)化為距離 23 27題型一:“在”型求切線【典型例題】例題1.(2022·全國(guó)·高三專題練習(xí))已知函數(shù)SKIPIF1<0.曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C解:因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以切點(diǎn)為SKIPIF1<0,切線的斜率SKIPIF1<0,所以切線方程為SKIPIF1<0,即SKIPIF1<0;故選:C例題2.(2022·四川·雅安中學(xué)高二期中(文))已知函數(shù)SKIPIF1<0在SKIPIF1<0上滿足SKIPIF1<0,則曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】∵函數(shù)SKIPIF1<0在SKIPIF1<0上滿足SKIPIF1<0,用SKIPIF1<0替換SKIPIF1<0得:SKIPIF1<0,∴SKIPIF1<0∴SKIPIF1<0令SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0∴SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0∴曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程是:SKIPIF1<0,即SKIPIF1<0.故選:C.【提分秘籍】已知SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程步驟:①求SKIPIF1<0;②SKIPIF1<0【變式演練】1.(2022·四川省遂寧市教育局模擬預(yù)測(cè)(文))已知SKIPIF1<0滿足SKIPIF1<0,且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】已知SKIPIF1<0滿足SKIPIF1<0,∴SKIPIF1<0為奇函數(shù),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,因此SKIPIF1<0,則x>0時(shí),SKIPIF1<0,曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線斜率SKIPIF1<0,又SKIPIF1<0,∴曲線SKIPIF1<0在點(diǎn)SKIPIF1<0,即(1,0)處的切線方程為SKIPIF1<0,整理得SKIPIF1<0﹒故選:C.2.(2022·河南·模擬預(yù)測(cè)(理))已知函數(shù)SKIPIF1<0的圖象經(jīng)過(guò)坐標(biāo)原點(diǎn),則曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】因?yàn)楹瘮?shù)SKIPIF1<0的圖象經(jīng)過(guò)坐標(biāo)原點(diǎn),所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0所以SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0.所以所求切線方程為SKIPIF1<0,即SKIPIF1<0.故選:A.3.(2022·廣東·佛山市南海區(qū)九江中學(xué)高二階段練習(xí))設(shè)函數(shù)SKIPIF1<0,則曲線SKIPIF1<0在點(diǎn)(3,-6)處的切線方程為(
)A.y=9x+21 B.y=-9x+19 C.y=9x+19 D.y=-9x+21【答案】D【詳解】解:因?yàn)楹瘮?shù)SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以切線的斜率為SKIPIF1<0.所以曲線SKIPIF1<0在點(diǎn)(3,-6)處的切線方程為y+6=-9(x-3),即y=-9x+21.故選:D.4.(2022·全國(guó)·高三專題練習(xí)(文))函數(shù)SKIPIF1<0在SKIPIF1<0處的切線方程為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】依題意,SKIPIF1<0,則SKIPIF1<0,而SKIPIF1<0,于是有SKIPIF1<0,即SKIPIF1<0,所以所求切線方程為:SKIPIF1<0.故選:A題型二:“過(guò)”型求切線【典型例題】例題1.(2022·全國(guó)·高二課時(shí)練習(xí))過(guò)點(diǎn)SKIPIF1<0作曲線SKIPIF1<0的切線,則切線方程為A.SKIPIF1<0或SKIPIF1<0 B.SKIPIF1<0或SKIPIF1<0C.SKIPIF1<0或SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】設(shè)切點(diǎn)為(m,m3-3m),SKIPIF1<0的導(dǎo)數(shù)為SKIPIF1<0,可得切線斜率k=3m2-3,由點(diǎn)斜式方程可得切線方程為y﹣m3+3m=(3m2-3)(x﹣m),代入點(diǎn)SKIPIF1<0可得﹣6﹣m3+3m=(3m2-3)(2﹣m),解得m=0或m=3,當(dāng)m=0時(shí),切線方程為SKIPIF1<0,當(dāng)m=3時(shí),切線方程為SKIPIF1<0,故選A.例題2.(2022·內(nèi)蒙古·阿拉善盟第一中學(xué)高二期末(文))已知曲線SKIPIF1<0,過(guò)點(diǎn)SKIPIF1<0的直線SKIPIF1<0與曲線SKIPIF1<0相切于點(diǎn)SKIPIF1<0,則點(diǎn)SKIPIF1<0的橫坐標(biāo)為_(kāi)_____________.【答案】0或SKIPIF1<0或SKIPIF1<0【詳解】設(shè)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,SKIPIF1<0,過(guò)點(diǎn)SKIPIF1<0的切線方程為SKIPIF1<0,代入點(diǎn)SKIPIF1<0的坐標(biāo)有SKIPIF1<0,整理為SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0或SKIPIF1<0,故答案為:0或SKIPIF1<0或SKIPIF1<0.【提分秘籍】函數(shù)SKIPIF1<0圖象過(guò)點(diǎn)SKIPIF1<0處的切線方程:①設(shè)切線坐標(biāo)SKIPIF1<0,②求出切線方程為SKIPIF1<0,③代入SKIPIF1<0求得SKIPIF1<0,從而得切線方程.【變式演練】1.(2022·山西太原·高三階段練習(xí))若過(guò)點(diǎn)SKIPIF1<0的直線與函數(shù)SKIPIF1<0的圖象相切,則所有可能的切點(diǎn)橫坐標(biāo)之和為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】因?yàn)楹瘮?shù)SKIPIF1<0,所以SKIPIF1<0,設(shè)切點(diǎn)為SKIPIF1<0,則切線方程為:SKIPIF1<0,將點(diǎn)SKIPIF1<0代入得SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,所以切點(diǎn)橫坐標(biāo)之和為SKIPIF1<0故選:D.2.(2022·全國(guó)·高三專題練習(xí))過(guò)點(diǎn)SKIPIF1<0作曲線SKIPIF1<0的切線,則切線方程為A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】由SKIPIF1<0,得SKIPIF1<0,設(shè)切點(diǎn)為SKIPIF1<0則SKIPIF1<0,∴切線方程為SKIPIF1<0,∵切線過(guò)點(diǎn)SKIPIF1<0,SKIPIF1<0∴?ex0=ex0(e?x0),解得:SKIPIF1<0.∴切線方程為SKIPIF1<0,整理得:SKIPIF1<0.故選C..3.(2022·河南省淮陽(yáng)中學(xué)高三階段練習(xí)(文))已知SKIPIF1<0,過(guò)SKIPIF1<0作曲線SKIPIF1<0的切線,切點(diǎn)在第一象限,則切線的斜率為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】解:由SKIPIF1<0,得SKIPIF1<0,設(shè)切點(diǎn)坐標(biāo)為SKIPIF1<0,則切線方程為SKIPIF1<0,把點(diǎn)SKIPIF1<0代入并整理,得SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍去),故切線斜率為SKIPIF1<0.故選:C.4.(2022·陜西安康·高三期末(理))曲線SKIPIF1<0過(guò)點(diǎn)SKIPIF1<0的切線方程是___________.【答案】SKIPIF1<0【詳解】由題意可得點(diǎn)SKIPIF1<0不在曲線SKIPIF1<0上,設(shè)切點(diǎn)為SKIPIF1<0,因?yàn)镾KIPIF1<0,∴所求切線的斜率SKIPIF1<0,所以SKIPIF1<0.因?yàn)辄c(diǎn)SKIPIF1<0是切點(diǎn),所以SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0.設(shè)SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,且SKIPIF1<0,所以SKIPIF1<0有唯一解SKIPIF1<0,則所求切線的斜率SKIPIF1<0,故所求切線方程為SKIPIF1<0.故答案為:SKIPIF1<0.題型三:已知切線條數(shù)求參數(shù)【典型例題】例題1.(2022·河南·安陽(yáng)一中高三階段練習(xí)(理))已知函數(shù)SKIPIF1<0,若過(guò)點(diǎn)SKIPIF1<0可以作出三條直線與曲線SKIPIF1<0相切,則SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】設(shè)切點(diǎn)坐標(biāo)為SKIPIF1<0,利用導(dǎo)數(shù)的幾何意義求得切線斜率,由直線過(guò)SKIPIF1<0得關(guān)于SKIPIF1<0的方程,此方程有3個(gè)不等的實(shí)根,方程轉(zhuǎn)化為SKIPIF1<0,是三次方程,它有3個(gè)解,則其極大值與極小值異號(hào),由此可得SKIPIF1<0的范圍.【詳解】設(shè)切點(diǎn)坐標(biāo)SKIPIF1<0曲線SKIPIF1<0在SKIPIF1<0處的切線斜率為SKIPIF1<0,又SKIPIF1<0切線過(guò)點(diǎn)SKIPIF1<0切線斜率為SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,∵過(guò)點(diǎn)SKIPIF1<0可作曲線SKIPIF1<0的三條切線,SKIPIF1<0方程SKIPIF1<0有3個(gè)解.令SKIPIF1<0,則SKIPIF1<0圖象與SKIPIF1<0軸有3個(gè)交點(diǎn),SKIPIF1<0的極大值與極小值異號(hào),SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0或2,SKIPIF1<0或SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0及SKIPIF1<0上遞增,在SKIPIF1<0上遞減,SKIPIF1<0是極大值,SKIPIF1<0是極小值,SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,故選:D.例題2.(2022·全國(guó)·益陽(yáng)平高學(xué)校高二期末)若過(guò)點(diǎn)SKIPIF1<0可作曲線SKIPIF1<0三條切線,則(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】設(shè)切點(diǎn)為SKIPIF1<0,根據(jù)導(dǎo)數(shù)的幾何意義寫(xiě)出切線的方程,代入點(diǎn)SKIPIF1<0,轉(zhuǎn)化為方程有3個(gè)根,構(gòu)造函數(shù)SKIPIF1<0,利用導(dǎo)數(shù)可知函數(shù)的極值,根據(jù)題意列出不等式組求解即可.【詳解】設(shè)切點(diǎn)為SKIPIF1<0,由SKIPIF1<0,故切線方程為SKIPIF1<0,因?yàn)镾KIPIF1<0在切線上,所以代入切線方程得SKIPIF1<0,則關(guān)于t的方程有三個(gè)不同的實(shí)數(shù)根,令SKIPIF1<0,則SKIPIF1<0或SKIPIF1<0,所以當(dāng)SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0為增函數(shù),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0為減函數(shù),且SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,所以只需SKIPIF1<0,解得SKIPIF1<0故選:A【提分秘籍】過(guò)點(diǎn)SKIPIF1<0可做函數(shù)SKIPIF1<0的一條(或兩條或三條)切線問(wèn)題步驟:①設(shè)切點(diǎn)SKIPIF1<0,求斜率SKIPIF1<0②求切線SKIPIF1<0③將點(diǎn)SKIPIF1<0代入切線SKIPIF1<0方程中得SKIPIF1<0④則問(wèn)題轉(zhuǎn)化為關(guān)于SKIPIF1<0的方程SKIPIF1<0就有幾個(gè)解⑤轉(zhuǎn)化為交點(diǎn)問(wèn)題或極值問(wèn)題求解.【變式演練】1.(2022·浙江大學(xué)附屬中學(xué)高三期中)若過(guò)SKIPIF1<0可做SKIPIF1<0的兩條切線,則(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】設(shè)切點(diǎn)為SKIPIF1<0,切線的斜率SKIPIF1<0,則切線方程為:SKIPIF1<0,把點(diǎn)SKIPIF1<0代入可得SKIPIF1<0,化為:SKIPIF1<0,則此方程有大于0的兩個(gè)實(shí)數(shù)根.則SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,故選:A.2.(2022·遼寧·高二期末)若過(guò)點(diǎn)SKIPIF1<0可以作曲線SKIPIF1<0的兩條切線,則(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】設(shè)切點(diǎn)坐標(biāo)為SKIPIF1<0,由于SKIPIF1<0,因此切線方程為SKIPIF1<0,又切線過(guò)點(diǎn)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,函數(shù)定義域是SKIPIF1<0,則直線SKIPIF1<0與曲線SKIPIF1<0有兩個(gè)不同的交點(diǎn),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0恒成立,SKIPIF1<0在定義域內(nèi)單調(diào)遞增,不合題意;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞減,SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞增,所以SKIPIF1<0,結(jié)合圖像知SKIPIF1<0,即SKIPIF1<0.故選:D.3.(2022·河南·馬店第一高級(jí)中學(xué)高二期中(文))已知函數(shù)SKIPIF1<0,過(guò)點(diǎn)SKIPIF1<0可作曲線SKIPIF1<0的三條切線,則實(shí)數(shù)m的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】解:設(shè)切點(diǎn)為SKIPIF1<0,則SKIPIF1<0,所以切線的斜率為SKIPIF1<0,又因?yàn)榍芯€過(guò)點(diǎn)SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0或SKIPIF1<0,當(dāng)SKIPIF1<0或SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取得極大值SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取得極大小值SKIPIF1<0,因?yàn)檫^(guò)點(diǎn)SKIPIF1<0可作曲線SKIPIF1<0的三條切線,所以方程SKIPIF1<0有3個(gè)解,則SKIPIF1<0,解得SKIPIF1<0,故選:D題型四:判斷切線條數(shù)【典型例題】例題1.(2022·安徽蚌埠·模擬預(yù)測(cè)(理))已知函數(shù)SKIPIF1<0,過(guò)點(diǎn)SKIPIF1<0作曲線SKIPIF1<0的切線,則可作切線的最多條數(shù)是______.【答案】3【詳解】∵點(diǎn)SKIPIF1<0不在函數(shù)SKIPIF1<0的圖象上,∴點(diǎn)SKIPIF1<0不是切點(diǎn),設(shè)切點(diǎn)為SKIPIF1<0(SKIPIF1<0),由SKIPIF1<0,可得SKIPIF1<0,則切線的斜率SKIPIF1<0,∴SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0或SKIPIF1<0,故切線有3條.故答案為:3.【提分秘籍】過(guò)點(diǎn)SKIPIF1<0可做函數(shù)SKIPIF1<0的幾條切線問(wèn)題步驟:①設(shè)切點(diǎn)SKIPIF1<0,求斜率SKIPIF1<0②求切線SKIPIF1<0③將點(diǎn)SKIPIF1<0代入切線SKIPIF1<0方程中得SKIPIF1<0④解出SKIPIF1<0即可判斷切線為幾條.【變式演練】1.(2022·全國(guó)·模擬預(yù)測(cè)(理))過(guò)點(diǎn)SKIPIF1<0作曲線SKIPIF1<0的切線,當(dāng)SKIPIF1<0時(shí),切線的條數(shù)是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】設(shè)切點(diǎn)為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0切線斜率SKIPIF1<0,SKIPIF1<0切線方程為:SKIPIF1<0;又切線過(guò)SKIPIF1<0,SKIPIF1<0;設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;SKIPIF1<0在SKIPIF1<0,SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0恒成立,可得SKIPIF1<0圖象如下圖所示,則當(dāng)SKIPIF1<0時(shí),SKIPIF1<0與SKIPIF1<0有三個(gè)不同的交點(diǎn),即當(dāng)SKIPIF1<0時(shí),方程SKIPIF1<0有三個(gè)不同的解,SKIPIF1<0切線的條數(shù)為SKIPIF1<0條.故選:D.2.(2022·全國(guó)·高三專題練習(xí))已知函數(shù)SKIPIF1<0,則過(guò)點(diǎn)SKIPIF1<0可作曲線SKIPIF1<0的切線的條數(shù)為(
)A.0 B.1 C.2 D.3【答案】C【詳解】解:因?yàn)镾KIPIF1<0,所以SKIPIF1<0,設(shè)切點(diǎn)為SKIPIF1<0,所以在切點(diǎn)SKIPIF1<0處的切線方程為SKIPIF1<0,又SKIPIF1<0在切線上,所以SKIPIF1<0,即SKIPIF1<0,整理得SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,所以過(guò)點(diǎn)SKIPIF1<0可作曲線SKIPIF1<0的切線的條數(shù)為2.故選:C.題型五:公切線問(wèn)題【典型例題】例題1.(2022·湖北·仙桃市田家炳實(shí)驗(yàn)高級(jí)中學(xué)高三階段練習(xí))若直線SKIPIF1<0是曲線SKIPIF1<0與SKIPIF1<0的公切線,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】設(shè)直線SKIPIF1<0與SKIPIF1<0的圖象相切于點(diǎn)SKIPIF1<0,與SKIPIF1<0的圖象相切于點(diǎn)SKIPIF1<0,求出SKIPIF1<0,SKIPIF1<0,由點(diǎn)SKIPIF1<0、點(diǎn)SKIPIF1<0在切線上,得切線方程,進(jìn)而即得.【詳解】設(shè)直線SKIPIF1<0與SKIPIF1<0的圖象相切于點(diǎn)SKIPIF1<0,與SKIPIF1<0的圖象相切于點(diǎn)SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,由點(diǎn)SKIPIF1<0在切線上,得切線方程為SKIPIF1<0;由點(diǎn)SKIPIF1<0在切線上,得切線方程為SKIPIF1<0,故SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0.故選:B.例題2.(2022·浙江金華·高三階段練習(xí))若直線SKIPIF1<0是曲線SKIPIF1<0和SKIPIF1<0的公切線,則實(shí)數(shù)SKIPIF1<0的值是___________.【答案】SKIPIF1<0【分析】設(shè)直線SKIPIF1<0與曲線SKIPIF1<0、SKIPIF1<0分別相切于點(diǎn)SKIPIF1<0、SKIPIF1<0,利用導(dǎo)數(shù)求出曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程,以及曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程,可得出關(guān)于SKIPIF1<0、SKIPIF1<0的方程組,解出這兩個(gè)量的值,即可求得SKIPIF1<0的值.【詳解】設(shè)直線SKIPIF1<0與曲線SKIPIF1<0、SKIPIF1<0分別相切于點(diǎn)SKIPIF1<0、SKIPIF1<0,對(duì)函數(shù)SKIPIF1<0求導(dǎo)得SKIPIF1<0,則SKIPIF1<0,曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程為SKIPIF1<0,即SKIPIF1<0,對(duì)函數(shù)SKIPIF1<0求導(dǎo)得SKIPIF1<0,則SKIPIF1<0,曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程為SKIPIF1<0,即SKIPIF1<0,所以,SKIPIF1<0,化簡(jiǎn)可得SKIPIF1<0.故答案為:SKIPIF1<0.【提分秘籍】SKIPIF1<0是SKIPIF1<0和SKIPIF1<0的公切線問(wèn)題:①設(shè)SKIPIF1<0與SKIPIF1<0相切的切點(diǎn)為SKIPIF1<0則,求出切線方程SKIPIF1<0②設(shè)SKIPIF1<0與SKIPIF1<0相切的切點(diǎn)為SKIPIF1<0則,求出切線方程SKIPIF1<0③聯(lián)立兩切線求解.【變式演練】1.(2022·重慶市育才中學(xué)高三階段練習(xí))若直線SKIPIF1<0(SKIPIF1<0)為曲線SKIPIF1<0與曲線SKIPIF1<0的公切線,則l的縱截距SKIPIF1<0(
)A.0 B.1 C.e D.SKIPIF1<0【答案】D【詳解】設(shè)l與SKIPIF1<0的切點(diǎn)為SKIPIF1<0,則由SKIPIF1<0,有SKIPIF1<0.同理,設(shè)l與SKIPIF1<0的切點(diǎn)為SKIPIF1<0,由SKIPIF1<0,有SKIPIF1<0.故SKIPIF1<0解得SKIPIF1<0或SKIPIF1<0則SKIPIF1<0或SKIPIF1<0.因SKIPIF1<0,所以l為SKIPIF1<0時(shí)不成立.故SKIPIF1<0,故選:D.2.(2022·湖南·長(zhǎng)沙一中高三開(kāi)學(xué)考試)若直線l:SKIPIF1<0為曲線SKIPIF1<0與曲線SKIPIF1<0的公切線(其中SKIPIF1<0為自然對(duì)數(shù)的底數(shù),SKIPIF1<0),則實(shí)數(shù)b=___________.【答案】SKIPIF1<0或SKIPIF1<0##SKIPIF1<0或SKIPIF1<0【詳解】根據(jù)切線方程的求解,聯(lián)立方程即可解得切點(diǎn),進(jìn)而可求SKIPIF1<0.設(shè)SKIPIF1<0與SKIPIF1<0的切點(diǎn)為SKIPIF1<0,則由SKIPIF1<0,有SKIPIF1<0.同理,設(shè)SKIPIF1<0與SKIPIF1<0的切點(diǎn)為SKIPIF1<0,由SKIPIF1<0,有SKIPIF1<0.故SKIPIF1<0由①式兩邊同時(shí)取對(duì)數(shù)得:SKIPIF1<0,將③代入②中可得:SKIPIF1<0,進(jìn)而解得SKIPIF1<0或SKIPIF1<0.則SKIPIF1<0或SKIPIF1<0故SKIPIF1<0或SKIPIF1<0.故答案為:SKIPIF1<0或SKIPIF1<0題型六:距離最小值【典型例題】例題1.(2022·江蘇·鎮(zhèn)江市實(shí)驗(yàn)高級(jí)中學(xué)高二期中)若點(diǎn)SKIPIF1<0,SKIPIF1<0分別是函數(shù)SKIPIF1<0與SKIPIF1<0圖象上的動(dòng)點(diǎn)(其中SKIPIF1<0是自然對(duì)數(shù)的底數(shù)),則SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.17【答案】A【詳解】設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0令SKIPIF1<0且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0設(shè)與SKIPIF1<0平行且與SKIPIF1<0相切的直線與SKIPIF1<0切于SKIPIF1<0SKIPIF1<0SKIPIF1<0.SKIPIF1<0SKIPIF1<0則SKIPIF1<0到直線SKIPIF1<0的距離為SKIPIF1<0,即SKIPIF1<0,故選:A.【提分秘籍】本例中設(shè)SKIPIF1<0,SKIPIF1<0,設(shè)與SKIPIF1<0平行且與SKIPIF1<0相切的直線與SKIPIF1<0切于SKIPIF1<0,由導(dǎo)數(shù)的幾何意義可求出點(diǎn)SKIPIF1<0的坐標(biāo),則SKIPIF1<0的最小值轉(zhuǎn)化為點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離【變式演練】1.(2022·浙江省杭州第二中學(xué)高三階段練習(xí))已知點(diǎn)P在函數(shù)SKIPIF1<0的圖像上,點(diǎn)Q是在直線SKIPIF1<0上,記SKIPIF1<0,則(
)A.M有最小值SKIPIF1<0 B.當(dāng)M取最小值時(shí),點(diǎn)Q的橫坐標(biāo)是SKIPIF1<0C.M有最小值SKIPIF1<0 D.當(dāng)M取最小值時(shí),點(diǎn)Q的橫坐標(biāo)是SKIPIF1<0【答案】D【詳解】將SKIPIF1<0化為SKIPIF1<0,即直線l的斜率為SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,∴當(dāng)M最小時(shí),點(diǎn)P的坐標(biāo)為SKIPIF1<0,此時(shí)點(diǎn)P到直線SKIPIF1<0的距離為SKIPIF1<0,所以M的最小值為SKIPIF1<0;過(guò)點(diǎn)P且垂直于SKIPIF1<0的直線方程為SKIPIF1<0,聯(lián)立SKIPIF1<0,得SKIPIF1<0,即點(diǎn)Q的橫坐標(biāo)為SKIPIF1<0.故選D2.(2022·江蘇·蘇州市蘇州高新區(qū)第一中學(xué)高二期中)直線SKIPIF1<0分別與曲線SKIPIF1<0,直線SKIPIF1<0交于SKIPIF1<0兩點(diǎn),則SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】由題,設(shè)SKIPIF1<0到直線SKIPIF1<0的距離為SKIPIF1<0,直線SKIPIF1<0的傾斜角為SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0最小即SKIPIF1<0最小,即為當(dāng)過(guò)點(diǎn)SKIPIF1<0處的切線與直線SKIPIF1<0平行時(shí)最小,由曲線SKIPIF1<0,得SKIPIF1<0,所以切點(diǎn)為SKIPIF1<0,可求得點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離最小值為SKIPIF1<0故SKIPIF1<0,故選:C3.(2022·全國(guó)·高二專題練習(xí))點(diǎn)A是曲線SKIPIF1<0上任意一點(diǎn),則點(diǎn)A到直線SKIPIF1<0的最小距離為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】不妨設(shè)SKIPIF1<0,定義域?yàn)椋篠KIPIF1<0對(duì)SKIPIF1<0求導(dǎo)可得:SKIPIF1<0令SKIPIF1<0解得:SKIPIF1<0(其中SKIPIF1<0舍去)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則此時(shí)該點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離為最小根據(jù)點(diǎn)到直線的距離公式可得:SKIPIF1<0解得:SKIPIF1<0故選:A4.(2022·四川省宜賓市第四中學(xué)校高三階段練習(xí)(文))已知點(diǎn)SKIPIF1<0是函數(shù)SKIPIF1<0圖象上的點(diǎn),點(diǎn)SKIPIF1<0是直線SKIPIF1<0上的點(diǎn),則SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】當(dāng)與直線SKIPIF1<0平行的直線與SKIPIF1<0的圖象相切時(shí),切點(diǎn)到直線SKIPIF1<0的距離為SKIPIF1<0的最小值.SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍去),又SKIPIF1<0,所以切點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離即為SKIPIF1<0的最小值,即SKIPIF1<0.故選:A.題型七:等價(jià)轉(zhuǎn)化為距離【典型例題】例題1.(2022·河南南陽(yáng)·高二階段練習(xí)(理))已知SKIPIF1<0,則SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】SKIPIF1<0表示點(diǎn)SKIPIF1<0和SKIPIF1<0之間的距離的平方;SKIPIF1<0點(diǎn)SKIPIF1<0的軌跡為SKIPIF1<0,點(diǎn)SKIPIF1<0的軌跡為SKIPIF1<0,SKIPIF1<0的最小值即為SKIPIF1<0上的點(diǎn)與SKIPIF1<0上的點(diǎn)的距離的平方的最小值;SKIPIF1<0,令SKIPIF1<0,解得:SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0與SKIPIF1<0平行的曲線SKIPIF1<0的切線方程為SKIPIF1<0且切點(diǎn)為SKIPIF1<0,SKIPIF1<0上的點(diǎn)與SKIPIF1<0上的點(diǎn)的最短距離為點(diǎn)SKIPIF1<0到SKIPIF1<0的距離,即最短距離SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0的最小值為SKIPIF1<0.故選:B.【提分秘籍】在本例中根據(jù)幾何意義可知SKIPIF1<0表示點(diǎn)SKIPIF1<0和SKIPIF1<0之間的距離的平方,根據(jù)點(diǎn)SKIPIF1<0的軌跡方程,可將問(wèn)題轉(zhuǎn)化為SKIPIF1<0上的點(diǎn)與SKIPIF1<0上的點(diǎn)的距離的平方的最小值的求解;利用導(dǎo)數(shù)可求得與SKIPIF1<0平行的曲線的切線及切點(diǎn),可知所求最小值即為切點(diǎn)到直線SKIPIF1<0距離平方的最小值,利用點(diǎn)到直線距離公式可求得結(jié)果.【變式演練】1.(2022·全國(guó)·高三專題練習(xí))已知實(shí)數(shù)a,b,c,d滿足:SKIPIF1<0,其中e是自然對(duì)數(shù)的底數(shù),則SKIPIF1<0的最小值是(
)A.7 B.8 C.9 D.10【答案】B【詳解】因?yàn)閷?shí)數(shù)a,b,c,d滿足:SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0.所以點(diǎn)SKIPIF1<0在曲線SKIPIF1<0上,點(diǎn)SKIPIF1<0在SKIPIF1<0上.所以SKIPIF1<0的幾何意義就是曲線SKIPIF1<0上的任一點(diǎn)到SKIPIF1<0上的任一點(diǎn)的距離的平方.由幾何意義可知,當(dāng)SKIPIF1<0的某一條切線與SKIPIF1<0平行時(shí),兩平行線間距離最小.設(shè)SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線與SKIPIF1<0平行,則有:SKIPIF1<0,解得:SKIPIF1<0,即切點(diǎn)為SKIPIF1<0.此時(shí)SKIPIF1<0到直線SKIPIF1<0的距離為SKIPIF1<0就是兩曲線間距離的最小值,所以SKIPIF1<0的最小值為SKIPIF1<0.故選:B2.(2022·江西·金溪一中高三階段練習(xí)(理))已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.2 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】SKIPIF1<0可以轉(zhuǎn)化為:SKIPIF1<0是函數(shù)SKIPIF1<0圖象上的點(diǎn),SKIPIF1<0是函數(shù)SKIPIF1<0上的點(diǎn),SKIPIF1<0.當(dāng)與直線SKIPIF1<0平行且與SKIPIF1<0的圖象相切時(shí),切點(diǎn)到直線SKIPIF1<0的距離為SKIPIF1<0的最小值.令SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,(舍去),又SKIPIF1<0,所以切點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離即為SKIPIF1<0的最小值.所以SKIPIF1<0,所以SKIPIF1<0.故選:B.3.(2022·全國(guó)·高三專題練習(xí))若SKIPIF1<0,則SKIPIF1<0的最小值是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】解:由已知可得SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的最小值即為曲線SKIPIF1<0的點(diǎn)到直線SKIPIF1<0的距離最小值的平方,設(shè)SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,曲線SKIPIF1<0與SKIPIF1<0平行的切線相切于SKIPIF1<0,則所求距離的最小值為點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離的平方,即SKIPIF1<0.故選:D.4.(2022·全國(guó)·高三專題練習(xí))已知SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】設(shè)SKIPIF1<0,SKIPIF1<0,點(diǎn)SKIPIF1<0在函數(shù)SKIPIF1<0上,點(diǎn)SKIPIF1<0在函數(shù)SKIPIF1<0上,SKIPIF1<0表示曲線SKIPIF1<0上點(diǎn)SKIPIF1<0到直線SKIPIF1<0的點(diǎn)SKIPIF1<0距離.由SKIPIF1<0,可得SKIPIF1<0,與直線SKIPIF1<0平行的直線的斜率為SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,所以切點(diǎn)的坐標(biāo)為SKIPIF1<0,切點(diǎn)到直線SKIPIF1<0的距離SKIPIF1<0.SKIPIF1<0的最小值為SKIPIF1<0.故選:B5.(2022·重慶市萬(wàn)州第二高級(jí)中學(xué)高二階段練習(xí))在平面直角坐標(biāo)系SKIPIF1<0中,已知SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的最小值為(
)A.9 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】由SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0的最小值轉(zhuǎn)化為:SKIPIF1<0上的點(diǎn)與SKIPIF1<0上的點(diǎn)的距離的平方的最小值,由SKIPIF1<0,得:SKIPIF1<0,與SKIPIF1<0平行的直線的斜率為1,∴SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍SKIPIF1<0,可得切點(diǎn)為SKIPIF1<0,切點(diǎn)到直線SKIPIF1<0之間的距離的平方,即為SKIPIF1<0的最小值,SKIPIF1<0的最小值為:SKIPIF1<0.故選:B.一、單選題1.(2023·江西·貴溪市實(shí)驗(yàn)中學(xué)高三階段練習(xí)(理))曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以切線方程為SKIPIF1<0,即SKIPIF1<0.故選:A.2.(2022·湖北·棗陽(yáng)一中高三期中)已知函數(shù)SKIPIF1<0的圖像在SKIPIF1<0處的切線過(guò)點(diǎn)SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.2 C.3 D.4【答案】B【詳解】由SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則函數(shù)在SKIPIF1<0處的切線方程為SKIPIF1<0,將SKIPIF1<0代入切線方程可得SKIPIF1<0.故選:B3.(2022·四川綿陽(yáng)·一模(理))已知直線SKIPIF1<0:SKIPIF1<0既是曲線SKIPIF1<0的切線,又是曲線SKIPIF1<0的切線,則SKIPIF1<0(
)A.0 B.SKIPIF1<0 C.0或SKIPIF1<0 D.SKIPIF1<0或SKIPIF1<0【答案】D【詳解】SKIPIF1<0,SKIPIF1<0,SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《電話營(yíng)銷培訓(xùn)課程》課件
- 委托單信息安全保障-洞察分析
- 用戶體驗(yàn)量化評(píng)估-洞察分析
- 信息安全框架構(gòu)建策略-洞察分析
- 焰火生產(chǎn)廢水處理技術(shù)-洞察分析
- 音樂(lè)版權(quán)糾紛案例分析-洞察分析
- 《導(dǎo)游人員管理辦法》課件
- 學(xué)術(shù)影響力評(píng)估研究-洞察分析
- 網(wǎng)絡(luò)釣魚(yú)攻擊防御-洞察分析
- 藝術(shù)批評(píng)標(biāo)準(zhǔn)與方法-第1篇-洞察分析
- 2024年新進(jìn)員工試用期考核標(biāo)準(zhǔn)3篇
- 《英美文化概況》課件
- 四川省2023年普通高中學(xué)業(yè)水平考試物理試卷 含解析
- 2024-2025學(xué)年人教版八年級(jí)上學(xué)期數(shù)學(xué)期末復(fù)習(xí)試題(含答案)
- 2024年醫(yī)院康復(fù)科年度工作總結(jié)(4篇)
- 五金耗材材料項(xiàng)目投標(biāo)方案(技術(shù)方案)
- 防網(wǎng)絡(luò)電信詐騙主題班會(huì)
- 中職無(wú)人機(jī)應(yīng)用技術(shù)跨行業(yè)人才培養(yǎng)方案
- 2024年執(zhí)業(yè)藥師繼續(xù)教育專業(yè)答案
- 高級(jí)管理招聘面試題與參考回答2024年
- 國(guó)際合作項(xiàng)目風(fēng)險(xiǎn)管理
評(píng)論
0/150
提交評(píng)論