新高考數(shù)學(xué)二輪復(fù)習(xí)考點(diǎn)歸納與演練專題7-1 基本不等式和對(duì)鉤函數(shù)(含解析)_第1頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)考點(diǎn)歸納與演練專題7-1 基本不等式和對(duì)鉤函數(shù)(含解析)_第2頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)考點(diǎn)歸納與演練專題7-1 基本不等式和對(duì)鉤函數(shù)(含解析)_第3頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)考點(diǎn)歸納與演練專題7-1 基本不等式和對(duì)鉤函數(shù)(含解析)_第4頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)考點(diǎn)歸納與演練專題7-1 基本不等式和對(duì)鉤函數(shù)(含解析)_第5頁(yè)
已閱讀5頁(yè),還剩27頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

專題7-1基本不等式和對(duì)鉤函數(shù)目錄TOC\o"1-1"\h\u專題7-1基本不等式和對(duì)鉤函數(shù) 1 1題型一:直接法 1題型二:湊配法 4題型三:分離法和換元法 7題型四:常數(shù)代換“1”的代換 11題型五:消元法 15題型六:對(duì)鉤函數(shù) 17 22一、單選題 22二、多選題 26三、填空題 28題型一:直接法【典例分析】例題1.(2022·福建·上杭縣第二中學(xué)高三階段練習(xí))當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0(

)A.有最大值SKIPIF1<0 B.有最小值SKIPIF1<0 C.有最大值4 D.有最小值4【答案】A【分析】利用基本不等式可直接得到函數(shù)的最值.詳解】SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)等號(hào)成立,故選:A例題2.(2022·黑龍江·哈爾濱德強(qiáng)高級(jí)中學(xué)有限公司高一階段練習(xí))已知SKIPIF1<0,則SKIPIF1<0有(

)A.最大值0 B.最小值0 C.最大值-4 D.最小值-4【答案】C【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)等號(hào)成立,所以SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0有最大值SKIPIF1<0,故選:C【提分秘籍】基本不等式(一正,二定,三相等,特別注意“一正”,“三相等”這兩類(lèi)陷阱)①如果SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),等號(hào)成立.②其中SKIPIF1<0叫做正數(shù)SKIPIF1<0,SKIPIF1<0的幾何平均數(shù);SKIPIF1<0叫做正數(shù)SKIPIF1<0,SKIPIF1<0的算數(shù)平均數(shù).【變式演練】1.(2022·江蘇·連云港市贛馬高級(jí)中學(xué)高一期末)函數(shù)SKIPIF1<0的最小值是(

)A.7 B.9 C.12 D.SKIPIF1<0【答案】C【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)取等號(hào),所以SKIPIF1<0,故選:C.2.(2022·黑龍江·哈爾濱工業(yè)大學(xué)附屬中學(xué)校高二學(xué)業(yè)考試)若SKIPIF1<0,則SKIPIF1<0的最小值是(

)A.0 B.1 C.SKIPIF1<0 D.2【答案】B【詳解】解:若SKIPIF1<0,則SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)等號(hào)成立所以SKIPIF1<0的最小值是1.故選:B.3.(2022·上海虹口·一模)對(duì)于正實(shí)數(shù)SKIPIF1<0,代數(shù)式SKIPIF1<0的最小值為_(kāi)_____.【答案】4【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0即SKIPIF1<0時(shí)取等,所以代數(shù)式SKIPIF1<0的最小值為4,故答案為:44.(2022·河北行唐啟明中學(xué)高一階段練習(xí))(1)已知SKIPIF1<0,求SKIPIF1<0的最大值【答案】(1)-2;【詳解】(1)因?yàn)镾KIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0時(shí)等號(hào)成立.所以SKIPIF1<0,所以,函數(shù)SKIPIF1<0的最大值為SKIPIF1<0.題型二:湊配法【典例分析】例題1.(2022·四川省南充高級(jí)中學(xué)高一期中)(1)已知SKIPIF1<0,求函數(shù)SKIPIF1<0的最大值.(2)已知SKIPIF1<0,求函數(shù)SKIPIF1<0的最大值.【答案】(1)SKIPIF1<0;(2)1;【詳解】(1)SKIPIF1<0當(dāng)且僅當(dāng)SKIPIF1<0時(shí),等號(hào)成立,因?yàn)镾KIPIF1<0所以函數(shù)SKIPIF1<0SKIPIF1<0的最大值為SKIPIF1<0.(2)因?yàn)镾KIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等號(hào),故函數(shù)SKIPIF1<0的最大值為1.例題2.(2022·西藏·拉薩市第二高級(jí)中學(xué)高一期中)若SKIPIF1<0,則SKIPIF1<0的最小值為_(kāi)_____,此時(shí)SKIPIF1<0______.【答案】

SKIPIF1<0

SKIPIF1<0【詳解】因?yàn)镾KIPIF1<0,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取到等號(hào).故SKIPIF1<0的最小值為SKIPIF1<0,此時(shí)SKIPIF1<0.故答案為:SKIPIF1<0;SKIPIF1<0【提分秘籍】在例題1中使用基本不等式一定要注意,積定,或者和定,否則需要湊配,比如:SKIPIF1<0直接使用基本不等式,則SKIPIF1<0發(fā)現(xiàn),和不定,無(wú)法直接使用基本不等式,需要湊配位和定:SKIPIF1<0;再如:SKIPIF1<0直接使用基本不等式,則SKIPIF1<0,發(fā)現(xiàn)積不定,則需要湊配為積定:SKIPIF1<0【變式演練】1.(2022·遼寧·大連八中高一階段練習(xí))已知SKIPIF1<0,則SKIPIF1<0的最小值為SKIPIF1<0,取得最小值時(shí)SKIPIF1<0,則SKIPIF1<0______.【答案】SKIPIF1<0【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等號(hào).故SKIPIF1<0,SKIPIF1<0,所以,SKIPIF1<0.故答案為:SKIPIF1<0.(2022·云南·屏邊苗族自治縣第一中學(xué)高一階段練習(xí))(若SKIPIF1<0,求:SKIPIF1<0的最小值.【答案】SKIPIF1<0.【詳解】由題意可得,SKIPIF1<0,則SKIPIF1<0SKIPIF1<0得SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0或SKIPIF1<0時(shí),等號(hào)成立,此時(shí)SKIPIF1<0的最小值為SKIPIF1<03.(2022·陜西·興平市南郊高級(jí)中學(xué)高一階段練習(xí))已知SKIPIF1<0,求SKIPIF1<0的最大值.【答案】)SKIPIF1<0【詳解】解:SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),取等號(hào),故SKIPIF1<0的最大值是SKIPIF1<0.4.(2022·江蘇·揚(yáng)州大學(xué)附屬中學(xué)東部分校高一期中)求下列函數(shù)的最值(1)已知SKIPIF1<0,求SKIPIF1<0的最小值;【答案】(1)SKIPIF1<0【詳解】(1)由題得SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)取得等號(hào),所以SKIPIF1<0的最小值為SKIPIF1<0.題型三:分離法和換元法【典例分析】例題1.(2022·安徽·合肥八中教育集團(tuán)銘傳高級(jí)中學(xué)高一期末)已知SKIPIF1<0,則SKIPIF1<0的最小值為(

)A.6 B.8 C.10 D.12【答案】A【詳解】解法一:因?yàn)镾KIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,當(dāng)且僅的SKIPIF1<0,即SKIPIF1<0時(shí)等號(hào)成立.故選:A.解法二:換元法:令SKIPIF1<0,代入SKIPIF1<0換元后可化為:SKIPIF1<0,分離后:SKIPIF1<0,當(dāng)且僅SKIPIF1<0時(shí),等式成立.例題2.(2022·重慶市育才中學(xué)高一期中)若SKIPIF1<0,則SKIPIF1<0的最小值為(

)A.2 B.4 C.5 D.6【答案】B【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,由基本不等式得SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),等號(hào)成立,故SKIPIF1<0的最小值為4.故選:B解法二:換元法:令SKIPIF1<0(SKIPIF1<0),則SKIPIF1<0化為:SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)等式成立【提分秘籍】對(duì)于分式型,可將分母看作一個(gè)整體,直接分離,也可采用換元法,對(duì)于分子,分母中次數(shù)低的式子,一次性換元后,再分離.【變式演練】1.(2022·江蘇省高淳高級(jí)中學(xué)高一階段練習(xí))已知函數(shù)SKIPIF1<0,定義域?yàn)镾KIPIF1<0,則函數(shù)SKIPIF1<0(

)A.有最小值1 B.有最大值1C.有最小值3 D.有最大值3【答案】B【詳解】SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由基本不等式,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),即SKIPIF1<0時(shí)等號(hào)成立,∴SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0最大值為1.故選:B.2.(2022·湖南·安化縣江英高級(jí)中學(xué)有限公司高一階段練習(xí))已知SKIPIF1<0,則函數(shù)SKIPIF1<0的最小值是______.【答案】SKIPIF1<0【詳解】因?yàn)镾KIPIF1<0,SKIPIF1<0SKIPIF1<0當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),等號(hào)成立.所以函數(shù)SKIPIF1<0的最小值是SKIPIF1<0故答案為:SKIPIF1<0.3.(2022·四川省瀘縣第四中學(xué)高二期中(文))當(dāng)SKIPIF1<0時(shí),則SKIPIF1<0的最大值為_(kāi)_____.【答案】SKIPIF1<0【詳解】由題意,SKIPIF1<0,故SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),等號(hào)成立.故答案為:SKIPIF1<04.(2022·河北·任丘市第一中學(xué)高一期中)解答下列問(wèn)題:已知SKIPIF1<0,求函數(shù)SKIPIF1<0最小值.【答案】9.【詳解】因?yàn)镾KIPIF1<0,SKIPIF1<0,SKIPIF1<0當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)等號(hào)成立.所以函數(shù)SKIPIF1<0的最小值為9.5.(2022·黑龍江·哈九中高一期中)已知函數(shù)SKIPIF1<0,SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),求SKIPIF1<0的最小值;(2)對(duì)任意SKIPIF1<0,SKIPIF1<0恒成立,求a的取值范圍.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【詳解】(1)SKIPIF1<0,當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)等號(hào)成立.SKIPIF1<0的最小值為SKIPIF1<0.(2)SKIPIF1<0,即SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)等號(hào)成立,故SKIPIF1<0.題型四:常數(shù)代換“1”的代換【典例分析】例題1.(2022·重慶·高一階段練習(xí))已知實(shí)數(shù)SKIPIF1<0滿足SKIPIF1<0,且SKIPIF1<0,若不等式SKIPIF1<0恒成立,則實(shí)數(shù)SKIPIF1<0的最大值為(

)A.9 B.25 C.16 D.12【答案】B【詳解】由SKIPIF1<0得SKIPIF1<0,又因?yàn)镾KIPIF1<0,所以實(shí)數(shù)SKIPIF1<0均是正數(shù),若不等式SKIPIF1<0恒成立,即SKIPIF1<0;SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),等號(hào)成立;所以,SKIPIF1<0,即實(shí)數(shù)SKIPIF1<0的最大值為25.故選:B.例題2.(2022·四川·成都七中一模(理))已知SKIPIF1<0(SKIPIF1<0),則SKIPIF1<0的最小值為_(kāi)__________.【答案】4【詳解】因?yàn)镾KIPIF1<0,故SKIPIF1<0SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)取等號(hào).故SKIPIF1<0的最小值為4.故答案為:4例題3.(2022·山西運(yùn)城·高三期中)已知實(shí)數(shù)SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的最小值是___________.【答案】SKIPIF1<0【詳解】因?yàn)閷?shí)數(shù)SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0,所以,SKIPIF1<0SKIPIF1<0SKIPIF1<0.當(dāng)且僅當(dāng)SKIPIF1<0時(shí),等號(hào)成立,故SKIPIF1<0的最小值為SKIPIF1<0.故答案為:SKIPIF1<0.【提分秘籍】1的代入:例:已知SKIPIF1<0,求SKIPIF1<0的最小值,解析:SKIPIF1<0.其中SKIPIF1<0,也可以改為SKIPIF1<0,“SKIPIF1<0是常數(shù)”【變式演練】1.(2022·遼寧葫蘆島·高一期中)若SKIPIF1<0,則SKIPIF1<0的最小值為(

)A.16 B.8 C.20 D.12【答案】A【詳解】由題意得SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)等號(hào)成立,所以SKIPIF1<0的最小值為16,故選:A2.(2022·浙江·杭州四中高一期中)設(shè)x,y都是正數(shù),且SKIPIF1<0,則SKIPIF1<0的最小值是(

)A.SKIPIF1<0 B.3 C.SKIPIF1<0 D.2【答案】A【詳解】SKIPIF1<0,當(dāng)SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0時(shí)等號(hào)成立.故選:A3.(2022·河北·高一期中)已知SKIPIF1<0,則SKIPIF1<0的最小值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.20 D.4【答案】D【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),等號(hào)成立,故SKIPIF1<0的最小值為4.故選:D.4.(多選)(2022·福建龍巖·高三期中)已知SKIPIF1<0,則SKIPIF1<0的值可能是(

)A.1 B.2.5 C.3 D.4.5【答案】CD【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),等號(hào)成立.故選:CD5.(2022·重慶·高三階段練習(xí))已知SKIPIF1<0,則SKIPIF1<0的最小值是______.【答案】SKIPIF1<0【詳解】由于SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)等號(hào)成立.故答案為:SKIPIF1<0題型五:消元法【典例分析】例題1.(2022·湖北武漢·模擬預(yù)測(cè))已知正實(shí)數(shù)SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的最小值為(

)A.0 B.2 C.4 D.6【答案】A【詳解】SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)等式不成立,∴a≠1,∴SKIPIF1<0,∴SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等號(hào),故選:A.例題2.(2022·遼寧·高三期中)若正實(shí)數(shù)SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的最小值為(

)A.6 B.5 C.4 D.3【答案】D【詳解】因?yàn)閤+2y+xy=7,所以SKIPIF1<0,所以SKIPIF1<0.因?yàn)镾KIPIF1<0,則SKIPIF1<0所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即x=1,y=2時(shí),等號(hào)成立,所以x+y的最小值為3.故選:D【提分秘籍】在基本不等式中,涉及到SKIPIF1<0的問(wèn)題,可以轉(zhuǎn)化為SKIPIF1<0,在代入目標(biāo)中求解,這樣二元問(wèn)題轉(zhuǎn)化為一元問(wèn)題,進(jìn)而再利用基本不等式求解目標(biāo)【變式演練】1.(2022·黑龍江·牡丹江市第三高級(jí)中學(xué)高三階段練習(xí))已知SKIPIF1<0為正實(shí)數(shù)且SKIPIF1<0,則SKIPIF1<0的最小值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.3【答案】D【詳解】解:因?yàn)镾KIPIF1<0為正實(shí)數(shù)且SKIPIF1<0,所以SKIPIF1<0,所以,SKIPIF1<0因?yàn)镾KIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)等號(hào)成立;所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)等號(hào)成立;故選:D2.(2022·河北·承德市高新區(qū)第一中學(xué)高一期中)已知二次函數(shù)SKIPIF1<0的值域?yàn)镾KIPIF1<0,則SKIPIF1<0的最小值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】若SKIPIF1<0,則函數(shù)SKIPIF1<0的值域?yàn)镾KIPIF1<0,不合乎題意,因?yàn)槎魏瘮?shù)SKIPIF1<0的值域?yàn)镾KIPIF1<0,則SKIPIF1<0,且SKIPIF1<0,所以,SKIPIF1<0,可得SKIPIF1<0,則SKIPIF1<0,所以,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),等號(hào)成立,因此,SKIPIF1<0的最小值為SKIPIF1<0.故選:B.題型六:對(duì)鉤函數(shù)【典例分析】例題1.(2021·全國(guó)·高一課時(shí)練習(xí))函數(shù)SKIPIF1<0的值域?yàn)開(kāi)_____【答案】SKIPIF1<0【詳解】SKIPIF1<0,令SKIPIF1<0,因?yàn)镾KIPIF1<0在SKIPIF1<0單調(diào)遞減,在SKIPIF1<0單調(diào)遞增,所以SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0所以SKIPIF1<0SKIPIF1<0,即值域?yàn)椋篠KIPIF1<0.故答案為:SKIPIF1<0例題2.(2020·廣東深圳·高一期末)已知命題SKIPIF1<0是假命題,則實(shí)數(shù)SKIPIF1<0的取值范圍是_______.【答案】SKIPIF1<0【詳解】命題SKIPIF1<0為假命題,則“SKIPIF1<0”為真命題,SKIPIF1<0,令SKIPIF1<0,該對(duì)勾函數(shù)在SKIPIF1<0上單調(diào)遞增,所以,SKIPIF1<0的范圍為SKIPIF1<0,而SKIPIF1<0,SKIPIF1<0恒成立,等價(jià)于SKIPIF1<0,SKIPIF1<0,而SKIPIF1<0,所以,“SKIPIF1<0”為真命題時(shí),SKIPIF1<0;故答案為:SKIPIF1<0例題3.(2015·浙江溫州·高二期中(文))若關(guān)于SKIPIF1<0的方程SKIPIF1<0在區(qū)間SKIPIF1<0上有解,則SKIPIF1<0的取值范圍是________.【答案】SKIPIF1<0【詳解】解:SKIPIF1<0在區(qū)間SKIPIF1<0上有解,即SKIPIF1<0在區(qū)間SKIPIF1<0上有解,令SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,又由對(duì)勾函數(shù)的性質(zhì)可知函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0的取值范圍是SKIPIF1<0.故答案為:SKIPIF1<0.【提分秘籍】對(duì)鉤函數(shù)是對(duì)基本不等式的補(bǔ)充對(duì)鉤函數(shù)是一種類(lèi)似于反比例函數(shù)的一般雙曲函數(shù),是形如:SKIPIF1<0(SKIPIF1<0)的函數(shù).由圖象得名,又被稱為:“雙勾函數(shù)”、“對(duì)號(hào)函數(shù)”、“雙飛燕函數(shù)”、“耐克函數(shù)”等.函數(shù)SKIPIF1<0(SKIPIF1<0)常考對(duì)鉤函數(shù)SKIPIF1<0(SKIPIF1<0)定義域SKIPIF1<0定義域SKIPIF1<0值域SKIPIF1<0值域SKIPIF1<0奇偶性奇函數(shù)奇偶性奇函數(shù)單調(diào)性SKIPIF1<0在SKIPIF1<0,SKIPIF1<0上單調(diào)遞增;在SKIPIF1<0,SKIPIF1<0單調(diào)遞減單調(diào)性SKIPIF1<0在SKIPIF1<0,SKIPIF1<0上單調(diào)遞增;在SKIPIF1<0,SKIPIF1<0單調(diào)遞減【變式演練】1.(2022·江蘇省天一中學(xué)高一期中)命題“SKIPIF1<0,SKIPIF1<0”為真命題的一個(gè)充分不必要條件是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】對(duì)SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,等價(jià)于SKIPIF1<0,令SKIPIF1<0,利用對(duì)勾函數(shù)性質(zhì)知函數(shù)在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0,SKIPIF1<0.因?yàn)镾KIPIF1<0,故A為充要條件,D為充分不必要條件.故選:D2.(2022·全國(guó)·高一課時(shí)練習(xí))已知函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,則函數(shù)SKIPIF1<0的值域?yàn)椋?/p>

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】SKIPIF1<0,定義域?yàn)镾KIPIF1<0,且SKIPIF1<0令SKIPIF1<0,SKIPIF1<0,利用對(duì)勾函數(shù)的性質(zhì)知,當(dāng)SKIPIF1<0時(shí),函數(shù)單減;當(dāng)SKIPIF1<0時(shí),函數(shù)單增;SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0又SKIPIF1<0,所以函數(shù)SKIPIF1<0的值域?yàn)镾KIPIF1<0故選:C3.(2022·北京八中高一期中)函數(shù)SKIPIF1<0的最小值為(

)A.2 B.SKIPIF1<0 C.3 D.SKIPIF1<0【答案】C【詳解】由對(duì)勾函數(shù)的性質(zhì)可知SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,故選:C4.(2022·吉林一中高二期末)若SKIPIF1<0使關(guān)于SKIPIF1<0的不等式SKIPIF1<0成立,則實(shí)數(shù)SKIPIF1<0的取值范圍是______.【答案】SKIPIF1<0【詳解】解:SKIPIF1<0,使關(guān)于SKIPIF1<0的不等式SKIPIF1<0成立,則SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,則對(duì)勾函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,故SKIPIF1<0故答案為:SKIPIF1<0一、單選題1.(2022·河南南陽(yáng)·高一階段練習(xí))若兩個(gè)正實(shí)數(shù)SKIPIF1<0滿足SKIPIF1<0,且存在這樣的SKIPIF1<0使不等式SKIPIF1<0有解,則實(shí)數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】由SKIPIF1<0得SKIPIF1<0,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),等號(hào)成立,則使不等式SKIPIF1<0有解,只需滿足SKIPIF1<0即可,解得SKIPIF1<0.故選:C.2.(2022·廣東清遠(yuǎn)·高一期中)設(shè)SKIPIF1<0,SKIPIF1<0,不等式SKIPIF1<0恒成立,則實(shí)數(shù)m的最小值是(

)A.SKIPIF1<0 B.2 C.1 D.SKIPIF1<0【答案】D【詳解】∵SKIPIF1<0,SKIPIF1<0,不等式SKIPIF1<0恒成立,即SKIPIF1<0恒成立,∴只需SKIPIF1<0,∵SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等號(hào).所以SKIPIF1<0,∴SKIPIF1<0,∴m的最小值為SKIPIF1<0,故選:D3.(2022·湖北·海亮教育仙桃市第一中學(xué)高一階段練習(xí))已知函數(shù)SKIPIF1<0(SKIPIF1<0且SKIPIF1<0)的圖象恒過(guò)定點(diǎn)A,若點(diǎn)A的坐標(biāo)滿足關(guān)于x,y的方程SKIPIF1<0,則SKIPIF1<0的最小值為(

)A.8 B.24 C.4 D.6【答案】C【詳解】因?yàn)楹瘮?shù)SKIPIF1<0圖象恒過(guò)定點(diǎn)SKIPIF1<0又點(diǎn)A的坐標(biāo)滿足關(guān)于SKIPIF1<0,SKIPIF1<0的方程SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0即SKIPIF1<0時(shí)取等號(hào);所以SKIPIF1<0的最小值為4.故選:C.4.(2022·浙江·杭州四中高一期中)已知SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的最小值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0時(shí),等號(hào)成立,所以SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0的最小值為SKIPIF1<0.故選:A.5.(2022·江蘇·揚(yáng)州中學(xué)高一階段練習(xí))設(shè)SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0(

)A.有最小值為4 B.有最小值為SKIPIF1<0C.有最小值為SKIPIF1<0 D.無(wú)最小值【答案】B【詳解】設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0即SKIPIF1<0,SKIPIF1<0時(shí)等號(hào)成立,故當(dāng)SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0取最小值SKIPIF1<0,故選:B6.(2022·廣東·惠州市華羅庚中學(xué)高一階段練習(xí))若指數(shù)函數(shù)SKIPIF1<0(SKIPIF1<0且SKIPIF1<0)的圖象恒過(guò)定點(diǎn)SKIPIF1<0,且點(diǎn)SKIPIF1<0在線段SKIPIF1<0上,則SKIPIF1<0的最小值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.8 D.9【答案】D【詳解】由題意得:SKIPIF1<0,代入直線得SKIPIF1<0,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等號(hào)故選:D.7.(2022·貴州貴陽(yáng)·高三階段練習(xí)(理))已知函數(shù)SKIPIF1<0的圖像恒過(guò)一點(diǎn)P,且點(diǎn)P在直線SKIPIF1<0的圖像上,則SKIPIF1<0的最小值為(

)A.4 B.6 C.7 D.8【答案】D【詳解】由函數(shù)SKIPIF1<0,可得SKIPIF1<0,則SKIPIF1<0,整理可得SKIPIF1<0,故SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),等號(hào)成立,故選:D.8.(2022·黑龍江·鶴崗一中高三階段練習(xí))已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的最小值為(

)A.4 B.6 C.8 D.10【答案】B【詳解】因?yàn)镾KIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0時(shí)等號(hào)成立,即SKIPIF1<0的最小值為6,故選:B.二、多選題9.(2022·山東·利津縣高級(jí)中學(xué)高三階段練習(xí))在下列函數(shù)中,最小值是4的是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0,SKIPIF1<0 D.SKIPIF1<0【答案】BD【詳解】對(duì)于A,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)取等號(hào);當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)取等號(hào),所以SKIPIF1<0,A錯(cuò)誤;對(duì)于B,SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)取等號(hào),所以SKIPIF1<0的最小值為4,B正確;對(duì)于C,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,由對(duì)勾函數(shù)性質(zhì)可知:SKIPIF1<0,C錯(cuò)誤;對(duì)于D,SKIPIF1<0,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)取等號(hào),所以SKIPIF1<0的最小值為4,D正確.故選:BD10.(2022·浙江·杭州市源清中學(xué)高二期中)下列結(jié)論中正確的結(jié)論是(

)A.SKIPIF1<0的最小值是4 B.SKIPIF1<0的最小值是SKIPIF1<0C.若SKIPIF1<0,則SKIPIF1<0的最小值是SKIPIF1<0 D.SKIPIF1<0的最大值是25【答案】AC【詳解】對(duì)于SKIPIF1<0:應(yīng)用基本不等式,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等號(hào),故SKIPIF1<0正確;對(duì)于SKIPIF1<0:應(yīng)用基本不等式SKIPIF1<0當(dāng)且僅當(dāng)SKIPIF1<0取等號(hào),即SKIPIF1<0不成立,最小值取不到,故SKIPIF1<0錯(cuò)誤;對(duì)于SKIPIF1<0:若SKIPIF1<0,SKIPIF1<0SKIPIF1<0當(dāng)且僅當(dāng)SKIPIF1<0時(shí),即SKIPIF1<0時(shí)取等號(hào),故SKIPIF1<0正確;對(duì)于SKIPIF1<0:SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0最大值是5.故SKIPIF1<0錯(cuò)誤;故選:SKIPIF1<0

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論