2024屆江西省吉安吉州區(qū)五校聯(lián)考中考數(shù)學(xué)押題卷含解析_第1頁
2024屆江西省吉安吉州區(qū)五校聯(lián)考中考數(shù)學(xué)押題卷含解析_第2頁
2024屆江西省吉安吉州區(qū)五校聯(lián)考中考數(shù)學(xué)押題卷含解析_第3頁
2024屆江西省吉安吉州區(qū)五校聯(lián)考中考數(shù)學(xué)押題卷含解析_第4頁
2024屆江西省吉安吉州區(qū)五校聯(lián)考中考數(shù)學(xué)押題卷含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2024屆江西省吉安吉州區(qū)五校聯(lián)考中考數(shù)學(xué)押題卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.下列命題中,真命題是()A.對角線互相垂直且相等的四邊形是正方形B.等腰梯形既是軸對稱圖形又是中心對稱圖形C.圓的切線垂直于經(jīng)過切點(diǎn)的半徑D.垂直于同一直線的兩條直線互相垂直2.計(jì)算:得()A.- B.- C.- D.3.如圖,點(diǎn)從矩形的頂點(diǎn)出發(fā),沿以的速度勻速運(yùn)動(dòng)到點(diǎn),圖是點(diǎn)運(yùn)動(dòng)時(shí),的面積隨運(yùn)動(dòng)時(shí)間變化而變化的函數(shù)關(guān)系圖象,則矩形的面積為()A. B. C. D.4.某藥品經(jīng)過兩次降價(jià),每瓶零售價(jià)由168元降為108元,已知兩次降價(jià)的百分率相同,設(shè)每次降價(jià)的百分率為x,根據(jù)題意列方程得()A.168(1﹣x)2=108 B.168(1﹣x2)=108C.168(1﹣2x)=108 D.168(1+x)2=1085.有個(gè)零件(正方體中間挖去一個(gè)圓柱形孔)如圖放置,它的主視圖是A. B. C. D.6.如圖,AB∥CD,點(diǎn)E在線段BC上,若∠1=40°,∠2=30°,則∠3的度數(shù)是()A.70° B.60° C.55° D.50°7.如圖,已知Rt△ABC中,∠BAC=90°,將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn),使點(diǎn)D落在射線CA上,DE的延長線交BC于F,則∠CFD的度數(shù)為()A.80° B.90° C.100° D.120°8.下列一元二次方程中,有兩個(gè)不相等實(shí)數(shù)根的是()A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=09.一個(gè)幾何體由大小相同的小正方體搭成,從上面看到的幾何體的形狀圖如圖所示,其中小正方形中的數(shù)字表示在這個(gè)位置小正方體的個(gè)數(shù).從左面看到的這個(gè)幾何體的形狀圖的是()A. B. C. D.10.如圖,在中,,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn),使點(diǎn)落在線段上的點(diǎn)處,點(diǎn)落在點(diǎn)處,則兩點(diǎn)間的距離為()A. B. C. D.11.已知,用尺規(guī)作圖的方法在上確定一點(diǎn),使,則符合要求的作圖痕跡是()A. B.C. D.12.一條數(shù)學(xué)信息在一周內(nèi)被轉(zhuǎn)發(fā)了2180000次,將數(shù)據(jù)2180000用科學(xué)記數(shù)法表示為()A.2.18×106B.2.18×105C.21.8×106D.21.8×105二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.如圖所示,過y軸正半軸上的任意一點(diǎn)P,作x軸的平行線,分別與反比例函數(shù)的圖象交于點(diǎn)A和點(diǎn)B,若點(diǎn)C是x軸上任意一點(diǎn),連接AC、BC,則△ABC的面積為_________.14.如圖,從直徑為4cm的圓形紙片中,剪出一個(gè)圓心角為90°的扇形OAB,且點(diǎn)O、A、B在圓周上,把它圍成一個(gè)圓錐,則圓錐的底面圓的半徑是_____cm.15.計(jì)算(﹣a2b)3=__.16.如圖,已知△ABC中,AB=AC=5,BC=8,將△ABC沿射線BC方向平移m個(gè)單位得到△DEF,頂點(diǎn)A,B,C分別與D,E,F(xiàn)對應(yīng),若以A,D,E為頂點(diǎn)的三角形是等腰三角形,且AE為腰,則m的值是______.17.如圖,為保護(hù)門源百里油菜花海,由“芬芳浴”游客中心A處修建通往百米觀景長廊BC的兩條棧道AB,AC.若∠B=56°,∠C=45°,則游客中心A到觀景長廊BC的距離AD的長約為_____米.(sin56°≈0.8,tan56°≈1.5)18.如圖,點(diǎn)、、在直線上,點(diǎn),,在直線上,以它們?yōu)轫旤c(diǎn)依次構(gòu)造第一個(gè)正方形,第二個(gè)正方形,若的橫坐標(biāo)是1,則的坐標(biāo)是______,第n個(gè)正方形的面積是______.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,AB是⊙O的直徑,弧CD⊥AB,垂足為H,P為弧AD上一點(diǎn),連接PA、PB,PB交CD于E.(1)如圖(1)連接PC、CB,求證:∠BCP=∠PED;(2)如圖(2)過點(diǎn)P作⊙O的切線交CD的延長線于點(diǎn)E,過點(diǎn)A向PF引垂線,垂足為G,求證:∠APG=∠F;(3)如圖(3)在圖(2)的條件下,連接PH,若PH=PF,3PF=5PG,BE=2,求⊙O的直徑AB.20.(6分)如圖,已知一次函數(shù)y=kx+b的圖象與x軸交于點(diǎn)A,與反比例函數(shù)(x<0)的圖象交于點(diǎn)B(﹣2,n),過點(diǎn)B作BC⊥x軸于點(diǎn)C,點(diǎn)D(3﹣3n,1)是該反比例函數(shù)圖象上一點(diǎn).求m的值;若∠DBC=∠ABC,求一次函數(shù)y=kx+b的表達(dá)式.21.(6分)有甲、乙兩個(gè)不透明的布袋,甲袋中有兩個(gè)完全相同的小球,分別標(biāo)有數(shù)字1和-1;乙袋中有三個(gè)完全相同的小球,分別標(biāo)有數(shù)字-1、0和1.小麗先從甲袋中隨機(jī)取出一個(gè)小球,記錄下小球上的數(shù)字為x;再從乙袋中隨機(jī)取出一個(gè)小球,記錄下小球上的數(shù)字為y,設(shè)點(diǎn)P的坐標(biāo)為(x,y).(1)請用表格或樹狀圖列出點(diǎn)P所有可能的坐標(biāo);(1)求點(diǎn)P在一次函數(shù)y=x+1圖象上的概率.22.(8分)如圖所示,在長和寬分別是a、b的矩形紙片的四個(gè)角都剪去一個(gè)邊長為x的正方形.(1)用a,b,x表示紙片剩余部分的面積;(2)當(dāng)a=6,b=4,且剪去部分的面積等于剩余部分的面積時(shí),求正方形的邊長.23.(8分)在平面直角坐標(biāo)系xOy中,拋物線,與x軸交于點(diǎn)C,點(diǎn)C在點(diǎn)D的左側(cè),與y軸交于點(diǎn)A.求拋物線頂點(diǎn)M的坐標(biāo);若點(diǎn)A的坐標(biāo)為,軸,交拋物線于點(diǎn)B,求點(diǎn)B的坐標(biāo);在的條件下,將拋物線在B,C兩點(diǎn)之間的部分沿y軸翻折,翻折后的圖象記為G,若直線與圖象G有一個(gè)交點(diǎn),結(jié)合函數(shù)的圖象,求m的取值范圍.24.(10分)如圖,一條公路的兩側(cè)互相平行,某課外興趣小組在公路一側(cè)AE的點(diǎn)A處測得公路對面的點(diǎn)C與AE的夾角∠CAE=30°,沿著AE方向前進(jìn)15米到點(diǎn)B處測得∠CBE=45°,求公路的寬度.(結(jié)果精確到0.1米,參考數(shù)據(jù):≈1.73)25.(10分)計(jì)算:(﹣1)2018﹣2+|1﹣|+3tan30°.26.(12分)已知關(guān)于x的一元二次方程x2+2(m﹣1)x+m2﹣3=0有兩個(gè)不相等的實(shí)數(shù)根.(1)求m的取值范圍;(2)若m為非負(fù)整數(shù),且該方程的根都是無理數(shù),求m的值.27.(12分)如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)A,C分別在x軸,y軸的正半軸上,且OA=4,OC=3,若拋物線經(jīng)過O,A兩點(diǎn),且頂點(diǎn)在BC邊上,對稱軸交BE于點(diǎn)F,點(diǎn)D,E的坐標(biāo)分別為(3,0),(0,1).(1)求拋物線的解析式;(2)猜想△EDB的形狀并加以證明;(3)點(diǎn)M在對稱軸右側(cè)的拋物線上,點(diǎn)N在x軸上,請問是否存在以點(diǎn)A,F(xiàn),M,N為頂點(diǎn)的四邊形是平行四邊形?若存在,請求出所有符合條件的點(diǎn)M的坐標(biāo);若不存在,請說明理由.

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、C【解題分析】分析是否為真命題,需要分別分析各題設(shè)是否能推出結(jié)論,從而利用排除法得出答案.解答:解:A、錯(cuò)誤,例如對角線互相垂直的等腰梯形;B、錯(cuò)誤,等腰梯形是軸對稱圖形不是中心對稱圖形;C、正確,符合切線的性質(zhì);D、錯(cuò)誤,垂直于同一直線的兩條直線平行.故選C.2、B【解題分析】

同級運(yùn)算從左向右依次計(jì)算,計(jì)算過程中注意正負(fù)符號的變化.【題目詳解】-故選B.【題目點(diǎn)撥】本題考查的是有理數(shù)的混合運(yùn)算,熟練掌握運(yùn)算法則是解題的關(guān)鍵.3、C【解題分析】

由函數(shù)圖象可知AB=2×2=4,BC=(6-2)×2=8,根據(jù)矩形的面積公式可求出.【題目詳解】由函數(shù)圖象可知AB=2×2=4,BC=(6-2)×2=8,∴矩形的面積為4×8=32,故選:C.【題目點(diǎn)撥】本題考查動(dòng)點(diǎn)運(yùn)動(dòng)問題、矩形面積等知識,根據(jù)圖形理解△ABP面積變化情況是解題的關(guān)鍵,屬于中考??碱}型.4、A【解題分析】

設(shè)每次降價(jià)的百分率為x,根據(jù)降價(jià)后的價(jià)格=降價(jià)前的價(jià)格(1-降價(jià)的百分率),則第一次降價(jià)后的價(jià)格是168(1-x),第二次后的價(jià)格是168(1-x)2,據(jù)此即可列方程求解.【題目詳解】設(shè)每次降價(jià)的百分率為x,根據(jù)題意得:168(1-x)2=1.故選A.【題目點(diǎn)撥】此題主要考查了一元二次方程的應(yīng)用,關(guān)鍵是根據(jù)題意找到等式兩邊的平衡條件,這種價(jià)格問題主要解決價(jià)格變化前后的平衡關(guān)系,列出方程即可.5、C【解題分析】

根據(jù)主視圖的定義判斷即可.【題目詳解】解:從正面看一個(gè)正方形被分成三部分,兩條分別是虛線,故正確.故選:.【題目點(diǎn)撥】此題考查的是主視圖的判斷,掌握主視圖的定義是解決此題的關(guān)鍵.6、A【解題分析】試題分析:∵AB∥CD,∠1=40°,∠1=30°,∴∠C=40°.∵∠3是△CDE的外角,∴∠3=∠C+∠2=40°+30°=70°.故選A.考點(diǎn):平行線的性質(zhì).7、B【解題分析】

根據(jù)旋轉(zhuǎn)的性質(zhì)得出全等,推出∠B=∠D,求出∠B+∠BEF=∠D+∠AED=90°,根據(jù)三角形外角性質(zhì)得出∠CFD=∠B+∠BEF,代入求出即可.【題目詳解】解:∵將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)得到△ADE,∴△ABC≌△ADE,∴∠B=∠D,∵∠CAB=∠BAD=90°,∠BEF=∠AED,∠B+∠BEF+∠BFE=180°,∠D+∠BAD+∠AED=180°,∴∠B+∠BEF=∠D+∠AED=180°﹣90°=90°,∴∠CFD=∠B+∠BEF=90°,故選:B.【題目點(diǎn)撥】本題考查了旋轉(zhuǎn)的性質(zhì),全等三角形的性質(zhì)和判定,三角形內(nèi)角和定理,三角形外角性質(zhì)的應(yīng)用,掌握旋轉(zhuǎn)變換的性質(zhì)是解題的關(guān)鍵.8、B【解題分析】分析:根據(jù)一元二次方程根的判別式判斷即可.詳解:A、x2+6x+9=0.△=62-4×9=36-36=0,方程有兩個(gè)相等實(shí)數(shù)根;B、x2=x.x2-x=0.△=(-1)2-4×1×0=1>0.方程有兩個(gè)不相等實(shí)數(shù)根;C、x2+3=2x.x2-2x+3=0.△=(-2)2-4×1×3=-8<0,方程無實(shí)根;D、(x-1)2+1=0.(x-1)2=-1,則方程無實(shí)根;故選B.點(diǎn)睛:本題考查的是一元二次方程根的判別式,一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac有如下關(guān)系:①當(dāng)△>0時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根;②當(dāng)△=0時(shí),方程有兩個(gè)相等的實(shí)數(shù)根;③當(dāng)△<0時(shí),方程無實(shí)數(shù)根.9、B【解題分析】分析:由已知條件可知,從正面看有1列,每列小正方數(shù)形數(shù)目分別為4,1,2;從左面看有1列,每列小正方形數(shù)目分別為1,4,1.據(jù)此可畫出圖形.詳解:由俯視圖及其小正方體的分布情況知,該幾何體的主視圖為:該幾何體的左視圖為:故選:B.點(diǎn)睛:此題主要考查了幾何體的三視圖畫法.由幾何體的俯視圖及小正方形內(nèi)的數(shù)字,可知主視圖的列數(shù)與俯視圖的列數(shù)相同,且每列小正方形數(shù)目為俯視圖中該列小正方形數(shù)字中的最大數(shù)字.左視圖的列數(shù)與俯視圖的行數(shù)相同,且每列小正方形數(shù)目為俯視圖中相應(yīng)行中正方形數(shù)字中的最大數(shù)字.10、A【解題分析】

先利用勾股定理計(jì)算出AB,再在Rt△BDE中,求出BD即可;【題目詳解】解:∵∠C=90°,AC=4,BC=3,

∴AB=5,

∵△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),使點(diǎn)C落在線段AB上的點(diǎn)E處,點(diǎn)B落在點(diǎn)D處,

∴AE=AC=4,DE=BC=3,

∴BE=AB-AE=5-4=1,

在Rt△DBE中,BD=,故選A.【題目點(diǎn)撥】本題考查了旋轉(zhuǎn)的性質(zhì):對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;對應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.11、D【解題分析】試題分析:D選項(xiàng)中作的是AB的中垂線,∴PA=PB,∵PB+PC=BC,∴PA+PC=BC.故選D.考點(diǎn):作圖—復(fù)雜作圖.12、A【解題分析】【分析】科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對值<1時(shí),n是負(fù)數(shù).【題目詳解】2180000的小數(shù)點(diǎn)向左移動(dòng)6位得到2.18,所以2180000用科學(xué)記數(shù)法表示為2.18×106,故選A.【題目點(diǎn)撥】本題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、1.【解題分析】

設(shè)P(0,b),∵直線APB∥x軸,∴A,B兩點(diǎn)的縱坐標(biāo)都為b,而點(diǎn)A在反比例函數(shù)y=的圖象上,∴當(dāng)y=b,x=-,即A點(diǎn)坐標(biāo)為(-,b),又∵點(diǎn)B在反比例函數(shù)y=的圖象上,∴當(dāng)y=b,x=,即B點(diǎn)坐標(biāo)為(,b),∴AB=-(-)=,∴S△ABC=?AB?OP=??b=1.14、【解題分析】

設(shè)圓錐的底面圓的半徑為r,由于∠AOB=90°得到AB為圓形紙片的直徑,則OB=cm,根據(jù)弧長公式計(jì)算出扇形OAB的弧AB的長,然后根據(jù)圓錐的側(cè)面展開圖為扇形,扇形的弧長等于圓錐底面圓的周長進(jìn)行計(jì)算.【題目詳解】解:設(shè)圓錐的底面圓的半徑為r,連結(jié)AB,如圖,∵扇形OAB的圓心角為90°,∴∠AOB=90°,∴AB為圓形紙片的直徑,∴AB=4cm,∴OB=cm,∴扇形OAB的弧AB的長=π,∴2πr=π,∴r=(cm).故答案為.【題目點(diǎn)撥】本題考查了圓錐的計(jì)算:圓錐的側(cè)面展開圖為扇形,扇形的弧長等于圓錐底面圓的周長,扇形的半徑等于圓錐的母線長.也考查了圓周角定理和弧長公式.15、?a6b3【解題分析】

根據(jù)積的乘方和冪的乘方法則計(jì)算即可.【題目詳解】原式=(﹣a2b)3=?a6b3,故答案為?a6b3.【題目點(diǎn)撥】本題考查了積的乘方和冪的乘方,關(guān)鍵是掌握運(yùn)算法則.16、或5或1.【解題分析】

根據(jù)以點(diǎn)A,D,E為頂點(diǎn)的三角形是等腰三角形分類討論即可.【題目詳解】解:如圖(1)當(dāng)在△ADE中,DE=5,當(dāng)AD=DE=5時(shí)為等腰三角形,此時(shí)m=5.(2)又AC=5,當(dāng)平移m個(gè)單位使得E、C點(diǎn)重合,此時(shí)AE=ED=5,平移的長度m=BC=1,(3)可以AE、AD為腰使ADE為等腰三角形,設(shè)平移了m個(gè)單位:則AN=3,AC=,AD=m,得:,得m=,綜上所述:m為或5或1,所以答案:或5或1.【題目點(diǎn)撥】本題主要考查等腰三角形的性質(zhì),注意分類討論的完整性.17、60【解題分析】

根據(jù)題意和圖形可以分別表示出AD和CD的長,從而可以求得AD的長,本題得以解決.【題目詳解】∵∠B=56°,∠C=45°,∠ADB=∠ADC=90°,BC=BD+CD=100米,∴BD=,CD=,∴+=100,解得,AD≈60考點(diǎn):解直角三角形的應(yīng)用.18、(4,2),【解題分析】

由的橫坐標(biāo)是1,可得,利用兩個(gè)函數(shù)解析式求出點(diǎn)、的坐標(biāo),得出的長度以及第1個(gè)正方形的面積,求出的坐標(biāo);然后再求出的坐標(biāo),得出第2個(gè)正方形的面積,求出的坐標(biāo);再求出、的坐標(biāo),得出第3個(gè)正方形的面積;從而得出規(guī)律即可得到第n個(gè)正方形的面積.【題目詳解】解:點(diǎn)、、在直線上,的橫坐標(biāo)是1,

,

點(diǎn),,在直線上,

,,

,,

第1個(gè)正方形的面積為:;

,

,,,

第2個(gè)正方形的面積為:;

,

,,

第3個(gè)正方形的面積為:;

,

第n個(gè)正方形的面積為:.

故答案為,.【題目點(diǎn)撥】本題考查了一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,正方形的性質(zhì)以及規(guī)律型中圖形的變化規(guī)律,解題的關(guān)鍵是找出規(guī)律本題難度適中,解決該題型題目時(shí),根據(jù)給定的條件求出第1、2、3個(gè)正方形的邊長,根據(jù)數(shù)據(jù)的變化找出變化規(guī)律是關(guān)鍵.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)見解析;(2)見解析;(3)AB=1【解題分析】

(1)由垂徑定理得出∠CPB=∠BCD,根據(jù)∠BCP=∠BCD+∠PCD=∠CPB+∠PCD=∠PED即可得證;(2)連接OP,知OP=OB,先證∠FPE=∠FEP得∠F+2∠FPE=180°,再由∠APG+∠FPE=90得2∠APG+2∠FPE=180°,據(jù)此可得2∠APG=∠F,據(jù)此即可得證;(3)連接AE,取AE中點(diǎn)N,連接HN、PN,過點(diǎn)E作EM⊥PF,先證∠PAE=∠F,由tan∠PAE=tan∠F得,再證∠GAP=∠MPE,由sin∠GAP=sin∠MPE得,從而得出,即MF=GP,由3PF=5PG即,可設(shè)PG=3k,得PF=5k、MF=PG=3k、PM=2k,由∠FPE=∠PEF知PF=EF=5k、EM=4k及PE=2k、AP=k,證∠PEM=∠ABP得BP=3k,繼而可得BE=k=2,據(jù)此求得k=2,從而得出AP、BP的長,利用勾股定理可得答案.【題目詳解】證明:(1)∵AB是⊙O的直徑且AB⊥CD,∴∠CPB=∠BCD,∴∠BCP=∠BCD+∠PCD=∠CPB+∠PCD=∠PED,∴∠BCP=∠PED;(2)連接OP,則OP=OB,∴∠OPB=∠OBP,∵PF是⊙O的切線,∴OP⊥PF,則∠OPF=90°,∠FPE=90°﹣∠OPE,∵∠PEF=∠HEB=90°﹣∠OBP,∴∠FPE=∠FEP,∵AB是⊙O的直徑,∴∠APB=90°,∴∠APG+∠FPE=90°,∴2∠APG+2∠FPE=180°,∵∠F+∠FPE+∠PEF=180°,∵∠F+2∠FPE=180°∴2∠APG=∠F,∴∠APG=∠F;(3)連接AE,取AE中點(diǎn)N,連接HN、PN,過點(diǎn)E作EM⊥PF于M,由(2)知∠APB=∠AHE=90°,∵AN=EN,∴A、H、E、P四點(diǎn)共圓,∴∠PAE=∠PHF,∵PH=PF,∴∠PHF=∠F,∴∠PAE=∠F,tan∠PAE=tan∠F,∴,由(2)知∠APB=∠G=∠PME=90°,∴∠GAP=∠MPE,∴sin∠GAP=sin∠MPE,則,∴,∴MF=GP,∵3PF=5PG,∴,設(shè)PG=3k,則PF=5k,MF=PG=3k,PM=2k由(2)知∠FPE=∠PEF,∴PF=EF=5k,則EM=4k,∴tan∠PEM=,tan∠F=,∴tan∠PAE=,∵PE=,∴AP=k,∵∠APG+∠EPM=∠EPM+∠PEM=90°,∴∠APG=∠PEM,∵∠APG+∠OPA=∠ABP+∠BAP=90°,且∠OAP=∠OPA,∴∠APG=∠ABP,∴∠PEM=∠ABP,則tan∠ABP=tan∠PEM,即,∴,則BP=3k,∴BE=k=2,則k=2,∴AP=3、BP=6,根據(jù)勾股定理得,AB=1.【題目點(diǎn)撥】本題主要考查圓的綜合問題,解題的關(guān)鍵是掌握圓周角定理、四點(diǎn)共圓條件、相似三角形的判定與性質(zhì)、三角函數(shù)的應(yīng)用等知識點(diǎn).20、(1)-6;(2).【解題分析】

(1)由點(diǎn)B(﹣2,n)、D(3﹣3n,1)在反比例函數(shù)(x<0)的圖象上可得﹣2n=3﹣3n,即可得出答案;(2)由(1)得出B、D的坐標(biāo),作DE⊥BC.延長DE交AB于點(diǎn)F,證△DBE≌△FBE得DE=FE=4,即可知點(diǎn)F(2,1),再利用待定系數(shù)法求解可得.【題目詳解】解:(1)∵點(diǎn)B(﹣2,n)、D(3﹣3n,1)在反比例函數(shù)(x<0)的圖象上,∴,解得:;(2)由(1)知反比例函數(shù)解析式為,∵n=3,∴點(diǎn)B(﹣2,3)、D(﹣6,1),如圖,過點(diǎn)D作DE⊥BC于點(diǎn)E,延長DE交AB于點(diǎn)F,在△DBE和△FBE中,∵∠DBE=∠FBE,BE=BE,∠BED=∠BEF=90°,∴△DBE≌△FBE(ASA),∴DE=FE=4,∴點(diǎn)F(2,1),將點(diǎn)B(﹣2,3)、F(2,1)代入y=kx+b,∴,解得:,∴.【題目點(diǎn)撥】本題主要考查了反比例函數(shù)與一次函數(shù)的綜合問題,解題的關(guān)鍵是能借助全等三角形確定一些相關(guān)線段的長.21、(1)見解析;(1)13【解題分析】試題分析:(1)畫出樹狀圖(或列表),根據(jù)樹狀圖(或表格)列出點(diǎn)P所有可能的坐標(biāo)即可;(1)根據(jù)(1)的所有結(jié)果,計(jì)算出這些結(jié)果中點(diǎn)P在一次函數(shù)圖像上的個(gè)數(shù),即可求得點(diǎn)P在一次函數(shù)圖像上的概率.試題解析:(1)畫樹狀圖:或列表如下:∴點(diǎn)P所有可能的坐標(biāo)為(1,-1),(1,0)(1,1)(-1,-1),(-1,0)(-1,1).∵只有(1,1)與(-1,-1)這兩個(gè)點(diǎn)在一次函數(shù)圖像上,∴P(點(diǎn)P在一次函數(shù)圖像上)=.考點(diǎn):用(樹狀圖或列表法)求概率.22、(1)ab﹣4x1(1)【解題分析】

(1)邊長為x的正方形面積為x1,矩形面積減去4個(gè)小正方形的面積即可.(1)依據(jù)剪去部分的面積等于剩余部分的面積,列方程求出x的值即可.【題目詳解】解:(1)ab﹣4x1.(1)依題意有:,將a=6,b=4,代入上式,得x1=2.解得x1=,x1=(舍去).∴正方形的邊長為.23、(1)M的坐標(biāo)為;(2)B(4,3);(3)或.【解題分析】

利用配方法將已知函數(shù)解析式轉(zhuǎn)化為頂點(diǎn)式方程,可以直接得到答案根據(jù)拋物線的對稱性質(zhì)解答;利用待定系數(shù)法求得拋物線的表達(dá)式為根據(jù)題意作出圖象G,結(jié)合圖象求得m的取值范圍.【題目詳解】解:(1),該拋物線的頂點(diǎn)M的坐標(biāo)為;由知,該拋物線的頂點(diǎn)M的坐標(biāo)為;該拋物線的對稱軸直線是,點(diǎn)A的坐標(biāo)為,軸,交拋物線于點(diǎn)B,點(diǎn)A與點(diǎn)B關(guān)于直線對稱,;拋物線與y軸交于點(diǎn),..拋物線的表達(dá)式為.拋物線G的解析式為:由.由,得:拋物線與x軸的交點(diǎn)C的坐標(biāo)為,點(diǎn)C關(guān)于y軸的對稱點(diǎn)的坐標(biāo)為.把代入,得:.把代入,得:.所求m的取值范圍是或.故答案為(1)M的坐標(biāo)為;(2)B(4,3);(3)或.【題目點(diǎn)撥】本題考查了二次函數(shù)圖象與幾何變換,待定系數(shù)法求二次函數(shù)的解析式、二次函數(shù)的圖象和性質(zhì),畫出函數(shù)G的圖象是解題的關(guān)鍵.24、公路的寬為20.5米.【解題分析】

作CD⊥AE,設(shè)CD=x米,由∠CBD=45°知BD=CD=x,根據(jù)tan∠CAD=,可得=,解之即可.【題目詳解】解:如圖,過點(diǎn)C作CD⊥AE于點(diǎn)D,設(shè)公路的寬CD=x米,∵∠CBD=45°,∴BD=CD=x,在Rt△ACD中,∵∠CAE=30°,∴tan∠CAD==,即=,解得:x=≈20.5(米),答:公路的寬為20.5米.【題目點(diǎn)撥】本題考查了直角三角形的應(yīng)用,解答本題的關(guān)鍵是根據(jù)仰角構(gòu)造直角三角形,利用三角函數(shù)解直角三角形.25、﹣6+2【解題分析】分析:直接利用二次根式的性質(zhì)以及絕對值的性質(zhì)和特殊角的三角函數(shù)值分別化簡求出答案.詳解:原式=1﹣6+﹣1+3×=﹣5+﹣1+=﹣6+2.點(diǎn)睛:此題主要考查了實(shí)數(shù)運(yùn)算,正確化簡各數(shù)是解題關(guān)鍵.26、(1)m<2;(2)m=1.【解題分析】

(1)利用方程有兩個(gè)不相等的實(shí)數(shù)根,得△=[2(m-1)]2-4(m2-3)=-8m+2>3,然后解不等式即可;

(2)先利用m的范圍得到m=3或m=1,再分別求出m=3和m=1時(shí)方程的根,然后根據(jù)根的情況確定滿足條件的m的值.【題目詳解】(1)△=[2(m﹣1)]2﹣4(m2﹣3)=﹣8m+2.∵方程有兩個(gè)不相等的實(shí)數(shù)根,∴△>3.即﹣8m+2>3.解得m<2;(2)∵m<2,且m為非負(fù)整數(shù),∴m=3或m=1,當(dāng)m=3時(shí),原方程為x2-2x-3=3,解得x1=3,x2=﹣1(不符合題意舍去),當(dāng)m=1時(shí),原方程為x2﹣2=3,解得x1=,x2=﹣,綜上所述,m=1.【題目點(diǎn)撥】本題考查了根的判別式:一元二次方程ax2+bx+c=3(a≠3)的根與△=b2-4ac有如下關(guān)系:當(dāng)△>3時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)△=3時(shí),方程有兩個(gè)相等的實(shí)數(shù)根;當(dāng)△<3時(shí),方程無實(shí)數(shù)根.27、(1)y=﹣x2+3x;(2)△EDB為等腰直角三角形;證明見解析;(3)(,2)或(,﹣2).【解題分析】

(1)由條件可求得拋物線的頂點(diǎn)坐標(biāo)及A點(diǎn)坐標(biāo),利用待定系

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論