浙江省杭州北干2024屆十校聯(lián)考最后數(shù)學試題含解析_第1頁
浙江省杭州北干2024屆十校聯(lián)考最后數(shù)學試題含解析_第2頁
浙江省杭州北干2024屆十校聯(lián)考最后數(shù)學試題含解析_第3頁
浙江省杭州北干2024屆十校聯(lián)考最后數(shù)學試題含解析_第4頁
浙江省杭州北干2024屆十校聯(lián)考最后數(shù)學試題含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

浙江省杭州北干2024屆十校聯(lián)考最后數(shù)學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列說法不正確的是()A.某種彩票中獎的概率是,買1000張該種彩票一定會中獎B.了解一批電視機的使用壽命適合用抽樣調(diào)查C.若甲組數(shù)據(jù)的標準差S甲=0.31,乙組數(shù)據(jù)的標準差S乙=0.25,則乙組數(shù)據(jù)比甲組數(shù)據(jù)穩(wěn)定D.在一個裝有白球和綠球的袋中摸球,摸出黑球是不可能事件2.在平面直角坐標系中,點P(m﹣3,2﹣m)不可能在()A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限3.已知,則的值是A.60 B.64 C.66 D.724.如圖,直線l1、l2、l3表示三條相互交叉的公路,現(xiàn)要建一個貨物中轉(zhuǎn)站,要求它到三條公路的距離相等,則供選擇的地址有()A.1處 B.2處 C.3處 D.4處5.氣象臺預報“本市明天下雨的概率是85%”,對此信息,下列說法正確的是()A.本市明天將有的地區(qū)下雨 B.本市明天將有的時間下雨C.本市明天下雨的可能性比較大 D.本市明天肯定下雨6.計算的結(jié)果是()A. B. C. D.17.拋物線y=mx2﹣8x﹣8和x軸有交點,則m的取值范圍是()A.m>﹣2 B.m≥﹣2 C.m≥﹣2且m≠0 D.m>﹣2且m≠08.一列快車從甲地駛往乙地,一列特快車從乙地駛往甲地,快車的速度為100千米/小時,特快車的速度為150千米/小時,甲乙兩地之間的距離為1000千米,兩車同時出發(fā),則圖中折線大致表示兩車之間的距離(千米)與快車行駛時間t(小時)之間的函數(shù)圖象是A. B.C. D.9.下列運算正確的是()A.a(chǎn)3?a2=a6 B.(2a)3=6a3C.(a﹣b)2=a2﹣b2 D.3a2﹣a2=2a210.如圖,為了測量河對岸l1上兩棵古樹A、B之間的距離,某數(shù)學興趣小組在河這邊沿著與AB平行的直線l2上取C、D兩點,測得∠ACB=15°,∠ACD=45°,若l1、l2之間的距離為50m,則A、B之間的距離為()A.50m B.25m C.(50﹣)m D.(50﹣25)m二、填空題(共7小題,每小題3分,滿分21分)11.太極揉推器是一種常見的健身器材.基本結(jié)構(gòu)包括支架和轉(zhuǎn)盤,數(shù)學興趣小組的同學對某太極揉推器的部分數(shù)據(jù)進行了測量:如圖,立柱AB的長為125cm,支架CD、CE的長分別為60cm、40cm,支點C到立柱頂點B的距離為25cm.支架CD,CE與立柱AB的夾角∠BCD=∠BCE=45°,轉(zhuǎn)盤的直徑FG=MN=60cm,D,E分別是FG,MN的中點,且CD⊥FG,CE⊥MN,則兩個轉(zhuǎn)盤的最低點F,N距離地面的高度差為_____cm.(結(jié)果保留根號)12.當2≤x≤5時,二次函數(shù)y=﹣(x﹣1)2+2的最大值為_____.13.豎直上拋的小球離地面的高度h(米)與時間t(秒)的函數(shù)關(guān)系式為h=﹣2t2+mt+,若小球經(jīng)過秒落地,則小球在上拋的過程中,第____秒時離地面最高.14.如圖,某數(shù)學興趣小組為了測量河對岸l1的兩棵古樹A、B之間的距離,他們在河這邊沿著與AB平行的直線l2上取C、D兩點,測得∠ACB=15°,∠ACD=45°,若l1、l2之間的距離為50m,則古樹A、B之間的距離為_____m.15.如圖為兩正方形ABCD、CEFG和矩形DFHI的位置圖,其中D,A兩點分別在CG、BI上,若AB=3,CE=5,則矩形DFHI的面積是_____.16.在如圖的正方形方格紙中,每個小的四邊形都是相同的正方形,A,B,C,D都在格點處,AB與CD相交于O,則tan∠BOD的值等于__________.17.在平面直角坐標系中,如果點P坐標為(m,n),向量可以用點P的坐標表示為=(m,n),已知:=(x1,y1),=(x2,y2),如果x1?x2+y1?y2=0,那么與互相垂直,下列四組向量:①=(2,1),=(﹣1,2);②=(cos30°,tan45°),=(﹣1,sin60°);③=(﹣,﹣2),=(+,);④=(π0,2),=(2,﹣1).其中互相垂直的是______(填上所有正確答案的符號).三、解答題(共7小題,滿分69分)18.(10分)如圖,已知□ABCD的面積為S,點P、Q時是?ABCD對角線BD的三等分點,延長AQ、AP,分別交BC,CD于點E,F(xiàn),連結(jié)EF。甲,乙兩位同學對條件進行分析后,甲得到結(jié)論①:“E是BC中點”.乙得到結(jié)論②:“四邊形QEFP的面積為S”。請判斷甲乙兩位同學的結(jié)論是否正確,并說明理由.19.(5分)解不等式組,并將它的解集在數(shù)軸上表示出來.20.(8分)數(shù)學興趣小組為了研究中小學男生身高y(cm)和年齡x(歲)的關(guān)系,從某市官網(wǎng)上得到了該市2017年統(tǒng)計的中小學男生各年齡組的平均身高,見下表:如圖已經(jīng)在直角坐標系中描出了表中數(shù)據(jù)對應的點,并發(fā)現(xiàn)前5個點大致位于直線AB上,后7個點大致位于直線CD上.年齡組x7891011121314151617男生平均身高y115.2118.3122.2126.5129.6135.6140.4146.1154.8162.9168.2(1)該市男學生的平均身高從歲開始增加特別迅速.(2)求直線AB所對應的函數(shù)表達式.(3)直接寫出直線CD所對應的函數(shù)表達式,假設17歲后該市男生身高增長速度大致符合直線CD所對應的函數(shù)關(guān)系,請你預測該市18歲男生年齡組的平均身高大約是多少?21.(10分)綜合與實踐﹣﹣旋轉(zhuǎn)中的數(shù)學問題背景:在一次綜合實踐活動課上,同學們以兩個矩形為對象,研究相似矩形旋轉(zhuǎn)中的問題:已知矩形ABCD∽矩形A′B′C′D′,它們各自對角線的交點重合于點O,連接AA′,CC′.請你幫他們解決下列問題:觀察發(fā)現(xiàn):(1)如圖1,若A′B′∥AB,則AA′與CC′的數(shù)量關(guān)系是______;操作探究:(2)將圖1中的矩形ABCD保持不動,矩形A′B′C′D′繞點O逆時針旋轉(zhuǎn)角度α(0°<α≤90°),如圖2,在矩形A′B′C′D′旋轉(zhuǎn)的過程中,(1)中的結(jié)論還成立嗎?若成立,請證明;若不成立,請說明理由;操作計算:(3)如圖3,在(2)的條件下,當矩形A′B′C′D′繞點O旋轉(zhuǎn)至AA′⊥A′D′時,若AB=6,BC=8,A′B′=3,求AA′的長.22.(10分)如圖,某校一幢教學大樓的頂部豎有一塊“傳承文明,啟智求真”的宣傳牌CD、小明在山坡的坡腳A處測得宣傳牌底部D的仰角為60°,然后沿山坡向上走到B處測得宣傳牌頂部C的仰角為45°.已知山坡AB的坡度i=1:,(斜坡的鉛直高度與水平寬度的比),經(jīng)過測量AB=10米,AE=15米,求點B到地面的距離;求這塊宣傳牌CD的高度.(測角器的高度忽略不計,結(jié)果保留根號)23.(12分)凱里市某文具店某種型號的計算器每只進價12元,售價20元,多買優(yōu)惠,優(yōu)勢方法是:凡是一次買10只以上的,每多買一只,所買的全部計算器每只就降價0.1元,例如:某人買18只計算器,于是每只降價0.1×(18﹣10)=0.8(元),因此所買的18只計算器都按每只19.2元的價格購買,但是每只計算器的最低售價為16元.求一次至少購買多少只計算器,才能以最低價購買?求寫出該文具店一次銷售x(x>10)只時,所獲利潤y(元)與x(只)之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;一天,甲顧客購買了46只,乙顧客購買了50只,店主發(fā)現(xiàn)賣46只賺的錢反而比賣50只賺的錢多,請你說明發(fā)生這一現(xiàn)象的原因;當10<x≤50時,為了獲得最大利潤,店家一次應賣多少只?這時的售價是多少?24.(14分)先化簡,再求值:1+xx2-1

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解題分析】試題分析:根據(jù)抽樣調(diào)查適用的條件、方差的定義及意義和可能性的大小找到正確答案即可.試題解析:A、某種彩票中獎的概率是,只是一種可能性,買1000張該種彩票不一定會中獎,故錯誤;B、調(diào)查電視機的使用壽命要毀壞電視機,有破壞性,適合用抽樣調(diào)查,故正確;C、標準差反映了一組數(shù)據(jù)的波動情況,標準差越小,數(shù)據(jù)越穩(wěn)定,故正確;D、袋中沒有黑球,摸出黑球是不可能事件,故正確.故選A.考點:1.概率公式;2.全面調(diào)查與抽樣調(diào)查;3.標準差;4.隨機事件.2、A【解題分析】

分點P的橫坐標是正數(shù)和負數(shù)兩種情況討論求解.【題目詳解】①m-3>0,即m>3時,2-m<0,所以,點P(m-3,2-m)在第四象限;②m-3<0,即m<3時,2-m有可能大于0,也有可能小于0,點P(m-3,2-m)可以在第二或三象限,綜上所述,點P不可能在第一象限.故選A.【題目點撥】本題考查了各象限內(nèi)點的坐標的符號特征,記住各象限內(nèi)點的坐標的符號是解決的關(guān)鍵,四個象限的符號特點分別是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3、A【解題分析】

將代入原式,計算可得.【題目詳解】解:當時,原式,故選A.【題目點撥】本題主要考查分式的加減法,解題的關(guān)鍵是熟練掌握完全平方公式.4、D【解題分析】

到三條相互交叉的公路距離相等的地點應是三條角平分線的交點.把三條公路的中心部位看作三角形,那么這個三角形兩個內(nèi)角平分線的交點以及三個外角兩兩平分線的交點都滿足要求.【題目詳解】滿足條件的有:(1)三角形兩個內(nèi)角平分線的交點,共一處;(2)三個外角兩兩平分線的交點,共三處.如圖所示,故選D.【題目點撥】本題考查了角平分線的性質(zhì);這是一道生活聯(lián)系實際的問題,解答此類題目時最直接的判斷就是三角形的角平分線,很容易漏掉外角平分線,解答時一定要注意,不要漏解.5、C【解題分析】試題解析:根據(jù)概率表示某事情發(fā)生的可能性的大小,分析可得:A、明天降水的可能性為85%,并不是有85%的地區(qū)降水,錯誤;B、本市明天將有85%的時間降水,錯誤;C、明天降水的可能性為90%,說明明天降水的可能性比較大,正確;D、明天肯定下雨,錯誤.故選C.考點:概率的意義.6、D【解題分析】

根據(jù)同分母分式的加法法則計算可得結(jié)論.【題目詳解】===1.故選D.【題目點撥】本題考查了分式的加減法,解題的關(guān)鍵是掌握同分母分式的加減運算法則.7、C【解題分析】

根據(jù)二次函數(shù)的定義及拋物線與x軸有交點,即可得出關(guān)于m的一元一次不等式組,解之即可得出m的取值范圍.【題目詳解】解:∵拋物線和軸有交點,,解得:且.故選.【題目點撥】本題考查了拋物線與x軸的交點、二次函數(shù)的定義以及解一元一次不等式組,牢記“當時,拋物線與x軸有交點是解題的關(guān)鍵.8、C【解題分析】分三段討論:①兩車從開始到相遇,這段時間兩車距迅速減??;②相遇后向相反方向行駛至特快到達甲地,這段時間兩車距迅速增加;③特快到達甲地至快車到達乙地,這段時間兩車距緩慢增大;結(jié)合圖象可得C選項符合題意.故選C.9、D【解題分析】試題分析:根據(jù)同底數(shù)冪相乘,底數(shù)不變指數(shù)相加求解求解;根據(jù)積的乘方,等于把積的每一個因式分別乘方,再把所得的冪相乘求解;根據(jù)完全平方公式求解;根據(jù)合并同類項法則求解.解:A、a3?a2=a3+2=a5,故A錯誤;B、(2a)3=8a3,故B錯誤;C、(a﹣b)2=a2﹣2ab+b2,故C錯誤;D、3a2﹣a2=2a2,故D正確.故選D.點評:本題考查了完全平方公式,合并同類項法則,同底數(shù)冪的乘法,積的乘方的性質(zhì),熟記性質(zhì)與公式并理清指數(shù)的變化是解題的關(guān)鍵.10、C【解題分析】

如圖,過點A作AM⊥DC于點M,過點B作BN⊥DC于點N.則AM=BN.通過解直角△ACM和△BCN分別求得CM、CN的長度,則易得AB=MN=CM﹣CN,即可得到結(jié)論.【題目詳解】如圖,過點A作AM⊥DC于點M,過點B作BN⊥DC于點N.則AB=MN,AM=BN.在直角△ACM中,∵∠ACM=45°,AM=50m,∴CM=AM=50m.在直角△BCN中,∵∠BCN=∠ACB+∠ACD=60°,BN=50m,∴CN=(m),∴MN=CM﹣CN=50﹣(m).則AB=MN=(50﹣)m.故選C.【題目點撥】本題考查了解直角三角形的應用.解決此問題的關(guān)鍵在于正確理解題意的基礎(chǔ)上建立數(shù)學模型,把實際問題轉(zhuǎn)化為數(shù)學問題.二、填空題(共7小題,每小題3分,滿分21分)11、10【解題分析】

作FP⊥地面于P,CJ⊥PF于J,F(xiàn)Q∥PA交CD于Q,QH⊥CJ于H.NT⊥地面于T.解直角三角形求出FP、NT即可解決問題.【題目詳解】解:作FP⊥地面于P,CJ⊥PF于J,F(xiàn)Q∥PA交CD于Q,QH⊥CJ于H.NT⊥地面于T.由題意△QDF,△QCH都是等腰直角三角形,四邊形FQHJ是矩形,∴DF=DQ=30cm,CQ=CD?DQ=60?30=30cm,∴FJ=QH=15cm,∵AC=AB?BC=125?25=100cm,∴PF=(15+100)cm,同法可求:NT=(100+5),∴兩個轉(zhuǎn)盤的最低點F,N距離地面的高度差為=(15+100)-(100+5)=10故答案為:10【題目點撥】本題考查解直角三角形的應用,解題的關(guān)鍵是學會添加常用輔助線,構(gòu)造直角三角形解決問題,屬于中考??碱}型.12、1.【解題分析】

先根據(jù)二次函數(shù)的圖象和性質(zhì)判斷出2≤x≤5時的增減性,然后再找最大值即可.【題目詳解】對稱軸為∵a=﹣1<0,∴當x>1時,y隨x的增大而減小,∴當x=2時,二次函數(shù)y=﹣(x﹣1)2+2的最大值為1,故答案為:1.【題目點撥】本題主要考查二次函數(shù)在一定范圍內(nèi)的最大值,掌握二次函數(shù)的圖象和性質(zhì)是解題的關(guān)鍵.13、.【解題分析】

首先根據(jù)題意得出m的值,進而求出t=﹣的值即可求得答案.【題目詳解】∵豎直上拋的小球離地面的高度h(米)與時間t(秒)的函數(shù)關(guān)系式為h=﹣2t2+mt+,小球經(jīng)過秒落地,∴t=時,h=0,則0=﹣2×()2+m+,解得:m=,當t=﹣=﹣時,h最大,故答案為:.【題目點撥】本題考查了二次函數(shù)的應用,正確得出m的值是解題關(guān)鍵.14、(50﹣).【解題分析】

過點A作AM⊥DC于點M,過點B作BN⊥DC于點N.則AM=BN.通過解直角△ACM和△BCN分別求得CM、CN的長度,則易得MN=AB.【題目詳解】解:如圖,過點A作AM⊥DC于點M,過點B作BN⊥DC于點N,則AB=MN,AM=BN.在直角△ACM,∵∠ACM=45°,AM=50m,∴CM=AM=50m.∵在直角△BCN中,∠BCN=∠ACB+∠ACD=60°,BN=50m,∴CN===(m),∴MN=CM?CN=50?(m).則AB=MN=(50?)m.故答案是:(50?).【題目點撥】本題考查了解直角三角形的應用.解決此問題的關(guān)鍵在于正確理解題意的基礎(chǔ)上建立數(shù)學模型,把實際問題轉(zhuǎn)化為數(shù)學問題.15、【解題分析】

由題意先求出DG和FG的長,再根據(jù)勾股定理可求得DF的長,然后再證明△DGF∽△DAI,依據(jù)相似三角形的性質(zhì)可得到DI的長,最后依據(jù)矩形的面積公式求解即可.【題目詳解】∵四邊形ABCD、CEFG均為正方形,∴CD=AD=3,CG=CE=5,∴DG=2,在Rt△DGF中,DF==,∵∠FDG+∠GDI=90°,∠GDI+∠IDA=90°,∴∠FDG=∠IDA.又∵∠DAI=∠DGF,∴△DGF∽△DAI,∴,即,解得:DI=,∴矩形DFHI的面積是=DF?DI=,故答案為:.【題目點撥】本題考查了正方形的性質(zhì),矩形的性質(zhì),相似三角形的判定和性質(zhì),三角形的面積,熟練掌握相關(guān)性質(zhì)定理與判定定理是解題的關(guān)鍵.16、3【解題分析】試題解析:平移CD到C′D′交AB于O′,如圖所示,則∠BO′D′=∠BOD,∴tan∠BOD=tan∠BO′D′,設每個小正方形的邊長為a,則O′B=,O′D′=,BD′=3a,作BE⊥O′D′于點E,則BE=,∴O′E=,∴tanBO′E=,∴tan∠BOD=3.考點:解直角三角形.17、①③④【解題分析】分析:根據(jù)兩個向量垂直的判定方法一一判斷即可;詳解:①∵2×(?1)+1×2=0,∴與垂直;②∵∴與不垂直.③∵∴與垂直.④∵∴與垂直.故答案為:①③④.點睛:考查平面向量,解題的關(guān)鍵是掌握向量垂直的定義.三、解答題(共7小題,滿分69分)18、①結(jié)論一正確,理由見解析;②結(jié)論二正確,S四QEFP=S【解題分析】試題分析:(1)由已知條件易得△BEQ∽△DAQ,結(jié)合點Q是BD的三等分點可得BE:AD=BQ:DQ=1:2,再結(jié)合AD=BC即可得到BE:BC=1:2,從而可得點E是BC的中點,由此即可說明甲同學的結(jié)論①成立;(2)同(1)易證點F是CD的中點,由此可得EF∥BD,EF=BD,從而可得△CEF∽△CBD,則可得得到S△CEF=S△CBD=S平行四邊形ABCD=S,結(jié)合S四邊形AECF=S可得S△AEF=S,由QP=BD,EF=BD可得QP:EF=2:3,結(jié)合△AQP∽△AEF可得S△AQP=S△AEF=,由此可得S四邊形QEFP=S△AEF-S△AQP=S,從而說明乙的結(jié)論②正確;試題解析:甲和乙的結(jié)論都成立,理由如下:(1)∵在平行四邊形ABCD中,AD∥BC,∴△BEQ∽△DAQ,又∵點P、Q是線段BD的三等分點,∴BE:AD=BQ:DQ=1:2,∵AD=BC,∴BE:BC=1:2,∴點E是BC的中點,即結(jié)論①正確;(2)和(1)同理可得點F是CD的中點,∴EF∥BD,EF=BD,∴△CEF∽△CBD,∴S△CEF=S△CBD=S平行四邊形ABCD=S,∵S四邊形AECF=S△ACE+S△ACF=S平行四邊形ABCD=S,∴S△AEF=S四邊形AECF-S△CEF=S,∵EF∥BD,∴△AQP∽△AEF,又∵EF=BD,PQ=BD,∴QP:EF=2:3,∴S△AQP=S△AEF=,∴S四邊形QEFP=S△AEF-S△AQP=S-=S,即結(jié)論②正確.綜上所述,甲、乙兩位同學的結(jié)論都正確.19、x≤1,解集表示在數(shù)軸上見解析【解題分析】

首先根據(jù)不等式的解法求解不等式,然后在數(shù)軸上表示出解集.【題目詳解】去分母,得:3x﹣2(x﹣1)≤3,去括號,得:3x﹣2x+2≤3,移項,得:3x﹣2x≤3﹣2,合并同類項,得:x≤1,將解集表示在數(shù)軸上如下:【題目點撥】本題考查了解一元一次不等式,解題的關(guān)鍵是掌握不等式的解法以及在數(shù)軸上表示不等式的解集.20、(1)11;(2)y=3.6x+90;(3)該市18歲男生年齡組的平均身高大約是174cm左右.【解題分析】

(1)根據(jù)統(tǒng)計圖仔細觀察即可得出結(jié)果(2)先設函數(shù)表達式,選取兩個點帶入求值即可(3)先設函數(shù)表達式,選取兩個點帶入求值,把帶入預測即可.【題目詳解】解:(1)由統(tǒng)計圖可得,該市男學生的平均身高從11歲開始增加特別迅速,故答案為:11;(2)設直線AB所對應的函數(shù)表達式∵圖象經(jīng)過點則,解得.即直線AB所對應的函數(shù)表達式:(3)設直線CD所對應的函數(shù)表達式為:,,得,即直線CD所對應的函數(shù)表達式為:把代入得即該市18歲男生年齡組的平均身高大約是174cm左右.【題目點撥】此題重點考察學生對統(tǒng)計圖和一次函數(shù)的應用,熟練掌握一次函數(shù)表達式的求法是解題的關(guān)鍵.21、(1)AA′=CC′;(2)成立,證明見解析;(3)AA′=【解題分析】

(1)連接AC、A′C′,根據(jù)題意得到點A、A′、C′、C在同一條直線上,根據(jù)矩形的性質(zhì)得到OA=OC,OA′=OC′,得到答案;(2)連接AC、A′C′,證明△A′OA≌△C′OC,根據(jù)全等三角形的性質(zhì)證明;(3)連接AC,過C作CE⊥AB′,交AB′的延長線于E,根據(jù)相似多邊形的性質(zhì)求出B′C′,根據(jù)勾股定理計算即可.【題目詳解】(1)AA′=CC′,理由如下:連接AC、A′C′,∵矩形ABCD∽矩形A′B′C′D′,∠CAB=∠C′A′B′,∵A′B′∥AB,∴點A、A′、C′、C在同一條直線上,由矩形的性質(zhì)可知,OA=OC,OA′=OC′,∴AA′=CC′,故答案為AA′=CC′;(2)(1)中的結(jié)論還成立,AA′=CC′,理由如下:連接AC、A′C′,則AC、A′C′都經(jīng)過點O,由旋轉(zhuǎn)的性質(zhì)可知,∠A′OA=∠C′OC,∵四邊形ABCD和四邊形A′B′C′D′都是矩形,∴OA=OC,OA′=OC′,在△A′OA和△C′OC中,,∴△A′OA≌△C′OC,∴AA′=CC′;(3)連接AC,過C作CE⊥AB′,交AB′的延長線于E,∵矩形ABCD∽矩形A′B′C′D′,∴,即,解得,B′C′=4,∵∠EB′C=∠B′C′C=∠E=90°,∴四邊形B′ECC′為矩形,∴EC=B′C′=4,在Rt△ABC中,AC==10,在Rt△AEC中,AE==2,∴AA′+B′E=2﹣3,又AA′=CC′=B′E,∴AA′=.【題目點撥】本題考查的是矩形的性質(zhì)、旋轉(zhuǎn)變換的性質(zhì)、全等三角形的判定和性質(zhì),掌握旋轉(zhuǎn)變換的性質(zhì)、矩形的性質(zhì)是解題的關(guān)鍵.22、(1)2;(2)宣傳牌CD高(20﹣1)m.【解題分析】試題分析:(1)在Rt△ABH中,由tan∠BAH==i==.得到∠BAH=30°,于是得到結(jié)果BH=ABsin∠BAH=1sin30°=1×=2;(2)在Rt△ABH中,AH=AB.cos∠BAH=1.cos30°=2.在Rt△ADE中,tan∠DAE=,即tan60°=,得到DE=12,如圖,過點B作BF⊥CE,垂足為F,求出BF=AH+AE=2+12,于是得到DF=DE﹣EF=DE﹣BH=12﹣2.在Rt△BCF中,∠C=90°﹣∠CBF=90°﹣42°=42°,求得∠C=∠CBF=42°,得出CF=BF=2+12,即可求得結(jié)果.試題解析:解:(1)在Rt△ABH中,∵

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論