湖南省益陽地區(qū)2024屆中考數學考前最后一卷含解析_第1頁
湖南省益陽地區(qū)2024屆中考數學考前最后一卷含解析_第2頁
湖南省益陽地區(qū)2024屆中考數學考前最后一卷含解析_第3頁
湖南省益陽地區(qū)2024屆中考數學考前最后一卷含解析_第4頁
湖南省益陽地區(qū)2024屆中考數學考前最后一卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

湖南省益陽地區(qū)2024屆中考數學考前最后一卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.已知△ABC中,∠BAC=90°,用尺規(guī)過點A作一條直線,使其將△ABC分成兩個相似的三角形,其作法不正確的是(

)A.

B.C.

D.2.如圖是一個由5個相同的正方體組成的立體圖形,它的主視圖是()A. B. C. D.3.甲、乙、丙、丁四名射擊運動員進行淘汰賽,在相同條件下,每人射擊10次,甲、乙兩人的成績如圖所示,丙、丁二人的成績如表所示.欲淘汰一名運動員,從平均數和方差兩個因素分析,應淘汰()丙丁平均數88方差1.21.8A.甲 B.乙 C.丙 D.丁4.下列計算結果正確的是()A. B.C. D.5.如圖,G,E分別是正方形ABCD的邊AB,BC上的點,且AG=CE,AE⊥EF,AE=EF,現有如下結論:①BE=DH;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH.其中,正確的結論有()A.4個 B.3個 C.2個 D.1個6.如圖,按照三視圖確定該幾何體的側面積是(單位:cm)()A.24πcm2 B.48πcm2 C.60πcm2 D.80πcm27.在直角坐標系中,我們把橫、縱坐標都為整數的點叫做整點.對于一條直線,當它與一個圓的公共點都是整點時,我們把這條直線稱為這個圓的“整點直線”.已知⊙O是以原點為圓心,半徑為圓,則⊙O的“整點直線”共有()條A.7 B.8 C.9 D.108.2018年,我國將加大精準扶貧力度,今年再減少農村貧困人口1000萬以上,完成異地扶貧搬遷280萬人.其中數據280萬用科學計數法表示為()A.2.8×105 B.2.8×106 C.28×105 D.0.28×1079.如圖,二次函數y=ax2+bx+c(a≠0)的圖象經過點(1,2)且與x軸交點的橫坐標分別為x1,x2,其中﹣1<x1<0,1<x2<2,下列結論:4a+2b+c<0,2a+b<0,b2+8a>4ac,a<﹣1,其中結論正確的有()A.1個 B.2個 C.3個 D.4個10.的倒數的絕對值是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖是測量河寬的示意圖,AE與BC相交于點D,∠B=∠C=90°,測得BD=120m,DC=60m,EC=50m,求得河寬AB=______m.12.如圖,正比例函數y=kx(k>0)與反比例函數y=6x13.使分式x214.如圖,四邊形ABCD內接于⊙O,AD、BC的延長線相交于點E,AB、DC的延長線相交于點F.若∠E+∠F=80°,則∠A=____°.15.若不等式(a+1)x>a+1的解集是x<1,則a的取值范圍是_________.16.如圖,在平面直角坐標系中,矩形OABC的兩邊OA,OC分別在x軸和y軸上,并且OA=5,OC=1.若把矩形OABC繞著點O逆時針旋轉,使點A恰好落在BC邊上的A1處,則點C的對應點C1的坐標為_____.三、解答題(共8題,共72分)17.(8分)某中學響應“陽光體育”活動的號召,準備從體育用品商店購買一些排球、足球和籃球,排球和足球的單價相同,同一種球的單價相同,若購買2個足球和3個籃球共需340元,購買4個排球和5個籃球共需600元.(1)求購買一個足球,一個籃球分別需要多少元?(2)該中學根據實際情況,需從體育用品商店一次性購買三種球共100個,且購買三種球的總費用不超過6000元,求這所中學最多可以購買多少個籃球?18.(8分)如圖,平行四邊形ABCD的對角線AC,BD相交于點O,EF過點O且與AB、CD分別交于點E、F.求證:OE=OF.19.(8分)某電器超市銷售每臺進價分別為200元,170元的A,B兩種型號的電風扇,表中是近兩周的銷售情況:銷售時段銷售數量銷售收入A種型號B種型號第一周3臺5臺1800元第二周4臺10臺3100元(進價、售價均保持不變,利潤=銷售收入-進貨成本)(1)求A,B兩種型號的電風扇的銷售單價.(2)若超市準備用不多于5400元的金額再采購這兩種型號的電風扇共30臺,則A種型號的電風扇最多能采購多少臺?(3)在(2)的條件下,超市銷售完這30臺電風扇能否實現利潤為1400元的目標?若能,請給出相應的采購方案;若不能,請說明理由.20.(8分)如圖,河的兩岸MN與PQ相互平行,點A,B是PQ上的兩點,C是MN上的點,某人在點A處測得∠CAQ=30°,再沿AQ方向前進20米到達點B,某人在點A處測得∠CAQ=30°,再沿AQ方向前進20米到達點B,測得∠CBQ=60°,求這條河的寬是多少米?(結果精確到0.1米,參考數據≈1.414,≈1.732)21.(8分)2018年大唐芙蓉園新春燈會以“鼓舞中華”為主題,既有新年韻味,又結合“一帶一路”展示了絲綢之路上古今文化經貿繁榮的盛況。小麗的爸爸買了兩張門票,她和各個兩人都想去觀看,可是爸爸只能帶一人去,于是讀九年級的哥哥提議用他們3人吃飯的彩色筷子做游戲(筷子除顏色不同,其余均相同),其中小麗的筷子顏色是紅色,哥哥的是銀色,爸爸的是白色,將3人的3雙款子全部放在一個不透明的筷簍里搖勻,小麗隨機從筷簍里取出一根,記下顏色放回,然后哥哥同樣從筷簍里取出一根,若兩人取出的筷子顏色相同則小麗去,若不同,則哥哥去。(1)求小麗隨機取出一根筷子是紅色的概率;(2)請用列表或畫樹狀圖的方法求出小隨爸爸去看新春燈會的概率。22.(10分)在四張編號為A,B,C,D的卡片(除編號外,其余完全相同)的正面分別寫上如圖所示的正整數后,背面向上,洗勻放好.(1)我們知道,滿足a2+b2=c2的三個正整數a,b,c成為勾股數,嘉嘉從中隨機抽取一張,求抽到的卡片上的數是勾股數的概率P1;(2)琪琪從中隨機抽取一張(不放回),再從剩下的卡片中隨機抽取一張(卡片用A,B,C,D表示).請用列表或畫樹形圖的方法求抽到的兩張卡片上的數都是勾股數的概率P2,并指出她與嘉嘉抽到勾股數的可能性一樣嗎?23.(12分)在一個不透明的口袋里裝有四個球,這四個球上分別標記數字﹣3、﹣1、0、2,除數字不同外,這四個球沒有任何區(qū)別.從中任取一球,求該球上標記的數字為正數的概率;從中任取兩球,將兩球上標記的數字分別記為x、y,求點(x,y)位于第二象限的概率.24.為弘揚中華傳統(tǒng)文化,黔南州近期舉辦了中小學生“國學經典大賽”.比賽項目為:A.唐詩;B.宋詞;C.論語;D.三字經.比賽形式分“單人組”和“雙人組”.小麗參加“單人組”,她從中隨機抽取一個比賽項目,恰好抽中“三字經”的概率是多少?小紅和小明組成一個小組參加“雙人組”比賽,比賽規(guī)則是:同一小組的兩名隊員的比賽項目不能相同,且每人只能隨機抽取一次,則恰好小紅抽中“唐詩”且小明抽中“宋詞”的概率是多少?請用畫樹狀圖或列表的方法進行說明.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解題分析】分析:根據過直線外一點作這條直線的垂線,及線段中垂線的做法,圓周角定理,分別作出直角三角形斜邊上的垂線,根據直角三角形斜邊上的垂線,把原直角三角形分成了兩個小直角三角形,圖中的三個直角三角形式彼此相似的;即可作出判斷.詳解:A、在角∠BAC內作作∠CAD=∠B,交BC于點D,根據余角的定義及等量代換得出∠B+∠BAD=90°,進而得出AD⊥BC,根據直角三角形斜邊上的垂線,把原直角三角形分成了兩個小直角三角形,圖中的三個直角三角形式彼此相似的;A不符合題意;B、以點A為圓心,略小于AB的長為半徑,畫弧,交線段BC兩點,再分別以這兩點為圓心,大于兩交點間的距離為半徑畫弧,兩弧相交于一點,過這一點與A點作直線,該直線是BC的垂線;根據直角三角形斜邊上的垂線,把原直角三角形分成了兩個小直角三角形,圖中的三個直角三角形是彼此相似的;B不符合題意;C、以AB為直徑作圓,該圓交BC于點D,根據圓周角定理,過AD兩點作直線該直線垂直于BC,根據直角三角形斜邊上的垂線,把原直角三角形分成了兩個小直角三角形,圖中的三個直角三角形式彼此相似的;C不符合題意;D、以點B為圓心BA的長為半徑畫弧,交BC于點E,再以E點為圓心,AB的長為半徑畫弧,在BC的另一側交前弧于一點,過這一點及A點作直線,該直線不一定是BE的垂線;從而就不能保證兩個小三角形相似;D符合題意;故選D.點睛:此題主要考查了相似變換以及相似三角形的判定,正確掌握相似三角形的判定方法是解題關鍵.2、A【解題分析】

根據從正面看得到的圖形是主視圖,可得答案.【題目詳解】解:從正面看第一層是三個小正方形,第二層中間有一個小正方形,

故選:A.【題目點撥】本題考查了簡單組合體的三視圖,從正面看得到的圖形是主視圖.3、D【解題分析】

求出甲、乙的平均數、方差,再結合方差的意義即可判斷.【題目詳解】=(6+10+8+9+8+7+8+9+7+7)=8,=[(6-8)2+(10-8)2+(8-8)2+(9-8)2+(8-8)2+(7-8)2+(8-8)2+(9-8)2+(7-8)2+(7-8)2]=×13=1.3;=(7+10+7+7+9+8+7+9+9+7)=8,=[(7-8)2+(10-8)2+(7-8)2+(7-8)2+(9-8)2+(8-8)2+(7-8)2+(9-8)2+(9-8)2+(7-8)2]=×12=1.2;丙的平均數為8,方差為1.2,丁的平均數為8,方差為1.8,故4個人的平均數相同,方差丁最大.故應該淘汰丁.故選D.【題目點撥】本題考查方差、平均數、折線圖等知識,解題的關鍵是記住平均數、方差的公式.4、C【解題分析】

利用冪的乘方、同底數冪的乘法、合并同類項及零指數冪的定義分別計算后即可確定正確的選項.【題目詳解】A、原式,故錯誤;B、原式,故錯誤;C、利用合并同類項的知識可知該選項正確;D、,,所以原式無意義,錯誤,故選C.【題目點撥】本題考查了冪的運算性質及特殊角的三角函數值的知識,解題的關鍵是能夠利用有關法則進行正確的運算,難度不大.5、C【解題分析】

由∠BEG=45°知∠BEA>45°,結合∠AEF=90°得∠HEC<45°,據此知HC<EC,即可判斷①;求出∠GAE+∠AEG=45°,推出∠GAE=∠FEC,根據SAS推出△GAE≌△CEF,即可判斷②;求出∠AGE=∠ECF=135°,即可判斷③;求出∠FEC<45°,根據相似三角形的判定得出△GBE和△ECH不相似,即可判斷④.【題目詳解】解:∵四邊形ABCD是正方形,∴AB=BC=CD,∵AG=GE,∴BG=BE,∴∠BEG=45°,∴∠BEA>45°,∵∠AEF=90°,∴∠HEC<45°,∴HC<EC,∴CD﹣CH>BC﹣CE,即DH>BE,故①錯誤;∵BG=BE,∠B=90°,∴∠BGE=∠BEG=45°,∴∠AGE=135°,∴∠GAE+∠AEG=45°,∵AE⊥EF,∴∠AEF=90°,∵∠BEG=45°,∴∠AEG+∠FEC=45°,∴∠GAE=∠FEC,在△GAE和△CEF中,∵AG=CE,∠GAE=∠CEF,AE=EF,∴△GAE≌△CEF(SAS)),∴②正確;∴∠AGE=∠ECF=135°,∴∠FCD=135°﹣90°=45°,∴③正確;∵∠BGE=∠BEG=45°,∠AEG+∠FEC=45°,∴∠FEC<45°,∴△GBE和△ECH不相似,∴④錯誤;故選:C.【題目點撥】本題考查了正方形的性質,等腰三角形的性質,全等三角形的性質和判定,相似三角形的判定,勾股定理等知識點的綜合運用,綜合比較強,難度較大.6、A【解題分析】

由主視圖和左視圖確定是柱體,錐體還是球體,再由俯視圖確定具體形狀,確定圓錐的母線長和底面半徑,從而確定其側面積.【題目詳解】解:由主視圖和左視圖為三角形判斷出是錐體,由俯視圖是圓形可判斷出這個幾何體應該是圓錐;根據三視圖知:該圓錐的母線長為6cm,底面半徑為8÷1=4cm,故側面積=πrl=π×6×4=14πcm1.故選:A.【題目點撥】此題考查學生對三視圖掌握程度和靈活運用能力,同時也體現了對空間想象能力方面的考查.7、D【解題分析】試題分析:根據圓的半徑可知:在圓上的整數點為(2,2)、(2,-2),(-2,-2),(-2,2)這四個點,經過任意兩點的“整點直線”有6條,經過其中的任意一點且圓相切的“整點直線”有4條,則合計共有10條.8、B【解題分析】分析:科學記數法的表示形式為的形式,其中為整數.確定的值時,要看把原數變成時,小數點移動了多少位,的絕對值與小數點移動的位數相同.當原數絕對值>1時,是正數;當原數的絕對值<1時,是負數.詳解:280萬這個數用科學記數法可以表示為故選B.點睛:考查科學記數法,掌握絕對值大于1的數的表示方法是解題的關鍵.9、D【解題分析】由拋物線的開口向下知a<0,與y軸的交點為在y軸的正半軸上,得c>0,對稱軸為x=<1,∵a<0,∴2a+b<0,而拋物線與x軸有兩個交點,∴?4ac>0,當x=2時,y=4a+2b+c<0,當x=1時,a+b+c=2.∵>2,∴4ac?<8a,∴+8a>4ac,∵①a+b+c=2,則2a+2b+2c=4,②4a+2b+c<0,③a?b+c<0.由①,③得到2a+2c<2,由①,②得到2a?c<?4,4a?2c<?8,上面兩個相加得到6a<?6,∴a<?1.故選D.點睛:本題考查了二次函數圖象與系數的關系,二次函數中,a的符號由拋物線的開口方向決定;c的符號由拋物線與y軸交點的位置決定;b的符號由對稱軸位置與a的符號決定;拋物線與x軸的交點個數決定根的判別式的符號,注意二次函數圖象上特殊點的特點.10、D【解題分析】

直接利用倒數的定義結合絕對值的性質分析得出答案.【題目詳解】解:?的倒數為?,則?的絕對值是:.故答案選:D.【題目點撥】本題考查了倒數的定義與絕對值的性質,解題的關鍵是熟練的掌握倒數的定義與絕對值的性質.二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解題分析】

由兩角對應相等可得△BAD∽△CED,利用對應邊成比例即可得兩岸間的大致距離AB的長.【題目詳解】解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,∴△ABD∽△ECD,∴,即,解得:AB==1(米).故答案為1.【題目點撥】本題主要考查了相似三角形的應用,用到的知識點為:兩角對應相等的兩三角形相似;相似三角形的對應邊成比例.12、1.【解題分析】

根據反比例函數的性質可判斷點A與點B關于原點對稱,則S△BOC=S△AOC,再利用反比例函數k的幾何意義得到S△AOC=3,則易得S△ABC=1.【題目詳解】∵雙曲線y=6x∴點A與點B關于原點對稱,∴S△BOC=S△AOC,∵S△AOC=12×1=3,∴S△ABC=2S△AOC故答案為1.13、1【解題分析】試題分析:根據題意可知這是分式方程,x2答案為1.考點:分式方程的解法14、50【解題分析】試題分析:連結EF,如圖,根據圓內接四邊形的性質得∠A+∠BCD=180°,根據對頂角相等得∠BCD=∠ECF,則∠A+∠ECF=180°,根據三角形內角和定理得∠ECF+∠1+∠2=180°,所以∠1+∠2=∠A,再利用三角形內角和定理得到∠A+∠AEB+∠1+∠2+∠AFD=180°,則∠A+80°+∠A=180°,然后解方程即可.試題解析:連結EF,如圖,∵四邊形ABCD內接于⊙O,∴∠A+∠BCD=180°,而∠BCD=∠ECF,∴∠A+∠ECF=180°,∵∠ECF+∠1+∠2=180°,∴∠1+∠2=∠A,∵∠A+∠AEF+∠AFE=180°,即∠A+∠AEB+∠1+∠2+∠AFD=180°,∴∠A+80°+∠A=180°,∴∠A=50°.考點:圓內接四邊形的性質.15、a<﹣1【解題分析】不等式(a+1)x>a+1兩邊都除以a+1,得其解集為x<1,∴a+1<0,解得:a<?1,故答案為a<?1.點睛:本題主要考查解一元一次不等式,解答此題的關鍵是掌握不等式的性質,再不等式兩邊同加或同減一個數或式子,不等號的方向不變,在不等式的兩邊同乘或同除一個正數或式子,不等號的方向不變,在不等式的兩邊同乘或同除一個負數或式子,不等號的方向改變.16、【解題分析】

直接利用相似三角形的判定與性質得出△ONC1三邊關系,再利用勾股定理得出答案.【題目詳解】過點C1作C1N⊥x軸于點N,過點A1作A1M⊥x軸于點M,由題意可得:∠C1NO=∠A1MO=90°,∠1=∠2=∠1,則△A1OM∽△OC1N,∵OA=5,OC=1,∴OA1=5,A1M=1,∴OM=4,∴設NO=1x,則NC1=4x,OC1=1,則(1x)2+(4x)2=9,解得:x=±(負數舍去),則NO=,NC1=,故點C的對應點C1的坐標為:(﹣,).故答案為(﹣,).【題目點撥】此題主要考查了矩形的性質以及勾股定理等知識,正確得出△A1OM∽△OC1N是解題關鍵.三、解答題(共8題,共72分)17、(1)一個足球需要50元,一個籃球需要80元;(2)1個.【解題分析】

(1)設購買一個足球需要x元,則購買一個排球也需要x元,購買一個籃球y元,根據購買2個足球和3個籃球共需340元,4個排球和5個籃球共需600元,可得出方程組,解出即可;【題目詳解】(1)設購買一個足球需要x元,則購買一個排球也需要x元,購買一個籃球y元,由題意得:2x+3y=解得:x=50y=80答:購買一個足球需要50元,購買一個籃球需要80元;(2)設該中學購買籃球m個,由題意得:80m+50(100﹣m)≤6000,解得:m≤113∵m是整數,∴m最大可取1.答:這所中學最多可以購買籃球1個.【題目點撥】本題考查了一元一次不等式及二元一次方程組的知識,解答本題的關鍵是仔細審題,得到等量關系及不等關系,難度一般.18、見解析【解題分析】

由四邊形ABCD是平行四邊形,根據平行四邊形對角線互相平分,即可得OA=OC,易證得△AEO≌△CFO,由全等三角形的對應邊相等,可得OE=OF.【題目詳解】證明:∵四邊形ABCD是平行四邊形,∴OA=OC,AB∥DC,∴∠EAO=∠FCO,在△AEO和△CFO中,∴△AEO≌△CFO(ASA),∴OE=OF.【題目點撥】本題考查了平行四邊形的性質和全等三角形的判定,屬于簡單題,熟悉平行四邊形的性質和全等三角形的判定方法是解題關鍵.19、(1)A,B兩種型號電風扇的銷售單價分別為250元/臺、210元/臺;(2)A種型號的電風扇最多能采購10臺;(3)在(2)的條件下超市不能實現利潤為1400元的目標.【解題分析】

(1)設A、B兩種型號電風扇的銷售單價分別為x元、y元,根據3臺A型號5臺B型號的電扇收入1800元,4臺A型號10臺B型號的電扇收入3100元,列方程組求解;(2)設采購A種型號電風扇a臺,則采購B種型號電風扇(30-a)臺,根據金額不多余5400元,列不等式求解;(3)設利潤為1400元,列方程求出a的值為20,不符合(2)的條件,可知不能實現目標.【題目詳解】(1)設A,B兩種型號電風扇的銷售單價分別為x元/臺、y元/臺.依題意,得解得答:A,B兩種型號電風扇的銷售單價分別為250元/臺、210元/臺.(2)設采購A種型號的電風扇a臺,則采購B種型號的電風扇(30-a)臺.依題意,得200a+170(30-a)≤5400,解得a≤10.答:A種型號的電風扇最多能采購10臺.(3)依題意,有(250-200)a+(210-170)(30-a)=1400,解得a=20.∵a≤10,∴在(2)的條件下超市不能實現利潤為1400元的目標.【題目點撥】本題考查了二元一次方程組和一元一次不等式的應用,解答本題的關鍵是讀懂題意,設出未知數,找出合適的等量關系和不等關系,列方程組和不等式求解.20、17.3米.【解題分析】分析:過點C作于D,根據,得到,在中,解三角形即可得到河的寬度.詳解:過點C作于D,∵∴∴米,在中,∵∴∴∴米,∴米.答:這條河的寬是米.點睛:考查解直角三角形的應用,作出輔助線,構造直角三角形是解題的關鍵.21、(1);(2).【解題分析】

(1)直接利用概率公式計算;(2)畫樹狀圖展示所有36種等可能的結果數,再找出兩人取出的筷子顏色相同的結果數,然后根據概率公式求解.【題目詳解】(1)小麗隨機取出一根筷子是紅色的概率==;(2)畫樹狀圖為:共有36種等可能的結果數,其中兩人取出的筷子顏色相同的結果數為12,所以小麗隨爸爸去看新春燈會的概率==.【題目點撥】

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論