版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
專題05解析幾何解析幾何一般作為解答題21題或者是22題形式出現(xiàn)。一般作為壓軸題或者是次壓軸題出現(xiàn),難度較大。1與原有關(guān)問題(蒙日圓,阿氏圓等)2面積問題3齊次化解決直線定點(diǎn)問題4一般的定值問題5非對稱問題6探究性問題7切線問題與阿基米德三角形問題8極點(diǎn)極限與調(diào)和點(diǎn)列,蝴蝶模型問題9不聯(lián)立問題10與其他知識點(diǎn)交叉問題蒙日圓定理的內(nèi)容:橢圓的兩條切線互相垂直,則兩切線的交點(diǎn)位于一個(gè)與橢圓同心的圓上,該圓稱為蒙日圓,其半徑等于橢圓長半軸和短半軸平方和的算術(shù)平方根,具體結(jié)論及證明如下:結(jié)論一:曲線SKIPIF1<0的兩條互相垂直的切線的交點(diǎn)SKIPIF1<0的軌跡是圓:SKIPIF1<0.結(jié)論二:雙曲線SKIPIF1<0的兩條互相垂直的切線的交點(diǎn)的軌跡是圓SKIPIF1<0SKIPIF1<0.結(jié)論三:拋物線SKIPIF1<0的兩條互相垂直的切線的交點(diǎn)在該拋物線的準(zhǔn)線上.題型一:與原有關(guān)問題(蒙日圓,協(xié)同圓等)例題1已知橢圓SKIPIF1<00).稱圓心在原點(diǎn),半徑為SKIPIF1<0的圓為橢圓SKIPIF1<0的“準(zhǔn)圓”.若橢圓SKIPIF1<0的一個(gè)焦點(diǎn)為SKIPIF1<0SKIPIF1<0,其短軸上的一個(gè)端點(diǎn)到SKIPIF1<0的距離為SKIPIF1<0.(1)求橢圓SKIPIF1<0的方程及其“準(zhǔn)圓”方程.(2)點(diǎn)SKIPIF1<0是橢圓SKIPIF1<0的“準(zhǔn)圓”上的動(dòng)點(diǎn),過點(diǎn)SKIPIF1<0作橢圓的切線SKIPIF1<0交“準(zhǔn)圓”于點(diǎn)SKIPIF1<0.①當(dāng)點(diǎn)SKIPIF1<0為“準(zhǔn)圓”與SKIPIF1<0軸正半軸的交點(diǎn)時(shí),求直線SKIPIF1<0的方程并證明SKIPIF1<0.②求證:線段SKIPIF1<0的長為定值.【解析】(1)依題意可得SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.SKIPIF1<0.(2)證明:①由(1)題可得SKIPIF1<0,設(shè)切線方程為:SKIPIF1<0.聯(lián)立SKIPIF1<0,消去SKIPIF1<0可得SKIPIF1<0,整理可得SKIPIF1<0.∴SKIPIF1<0SKIPIF1<0,解得SKIPIF1<0.∴設(shè)直線PM:SKIPIF1<0,直線SKIPIF1<0SKIPIF1<0.∴SKIPIF1<0,即SKIPIF1<0.②設(shè)SKIPIF1<0,直線SKIPIF1<0SKIPIF1<0.則SKIPIF1<0,消去SKIPIF1<0可得SKIPIF1<0.即SKIPIF1<0SKIPIF1<0.∴SKIPIF1<0.整理得SKIPIF1<0.同理,設(shè)切線SKIPIF1<0的斜率為SKIPIF1<0,則有SKIPIF1<0.∴SKIPIF1<0.∴SKIPIF1<0在“準(zhǔn)圓”上.∴SKIPIF1<0,∴SKIPIF1<0.∴SKIPIF1<0為“準(zhǔn)圓”的直徑.∴SKIPIF1<0為定值,SKIPIF1<0.1.公元前3世紀(jì),古希臘數(shù)學(xué)家阿波羅尼斯SKIPIF1<0在《平面軌跡》一書中,研究了眾多的平面軌跡問題,其中有如下著名結(jié)果:平面內(nèi)到兩個(gè)定點(diǎn)SKIPIF1<0,SKIPIF1<0距離之比為SKIPIF1<0且SKIPIF1<0的點(diǎn)SKIPIF1<0的軌跡為圓,此圓稱為阿波羅尼斯圓.(1)已知兩定點(diǎn)SKIPIF1<0,SKIPIF1<0,若動(dòng)點(diǎn)SKIPIF1<0滿足SKIPIF1<0,求點(diǎn)SKIPIF1<0的軌跡方程;(2)已知SKIPIF1<0,SKIPIF1<0是圓SKIPIF1<0上任意一點(diǎn),在平面上是否存在點(diǎn)SKIPIF1<0,使得SKIPIF1<0恒成立?若存在,求出點(diǎn)SKIPIF1<0坐標(biāo);若不存在,說明理由;(3)已知SKIPIF1<0是圓SKIPIF1<0上任意一點(diǎn),在平面內(nèi)求出兩個(gè)定點(diǎn)SKIPIF1<0,SKIPIF1<0,使得SKIPIF1<0恒成立.只需寫出兩個(gè)定點(diǎn)SKIPIF1<0,SKIPIF1<0的坐標(biāo),無需證明.題型二:面積問題1.已知M是平面直角坐標(biāo)系內(nèi)的一個(gè)動(dòng)點(diǎn),直線SKIPIF1<0與直線SKIPIF1<0垂直,A為垂足且位于第一象限,直線SKIPIF1<0與直線SKIPIF1<0垂直,B為垂足且位于第四象限,四邊形SKIPIF1<0(O為原點(diǎn))的面積為8,動(dòng)點(diǎn)M的軌跡為C.(1)求軌跡C的方程;(2)已知SKIPIF1<0是軌跡C上一點(diǎn),直線l交軌跡C于P,Q兩點(diǎn),直線SKIPIF1<0,SKIPIF1<0的斜率之和為1,SKIPIF1<0,求SKIPIF1<0的面積.【答案】(1)SKIPIF1<0(SKIPIF1<0)(2)SKIPIF1<0【詳解】(1)設(shè)動(dòng)點(diǎn)SKIPIF1<0,由題意知M只能在直線SKIPIF1<0與直線SKIPIF1<0所夾的范圍內(nèi)活動(dòng).SKIPIF1<0,SKIPIF1<0,動(dòng)點(diǎn)SKIPIF1<0在SKIPIF1<0右側(cè),有SKIPIF1<0,同理有SKIPIF1<0,∵四邊形SKIPIF1<0的面積為8,∴SKIPIF1<0,即SKIPIF1<0,所以所求軌跡C方程為SKIPIF1<0(SKIPIF1<0).(2)如圖,設(shè)直線SKIPIF1<0的傾斜角為SKIPIF1<0,斜率為k,直線SKIPIF1<0傾斜角為SKIPIF1<0,則SKIPIF1<0斜率為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0在曲線C上,過點(diǎn)T直線與曲線C有兩個(gè)交點(diǎn),則SKIPIF1<0或SKIPIF1<0,同時(shí)SKIPIF1<0或SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0.
SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍去).SKIPIF1<0時(shí),直線SKIPIF1<0的方程為SKIPIF1<0,聯(lián)立SKIPIF1<0,消y得:SKIPIF1<0,則SKIPIF1<0或SKIPIF1<0,得SKIPIF1<0.直線SKIPIF1<0的方程為SKIPIF1<0,聯(lián)立SKIPIF1<0,消y得:SKIPIF1<0,則SKIPIF1<0或SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,點(diǎn)Q到直線SKIPIF1<0的距離SKIPIF1<0
,SKIPIF1<0.方法二:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0.1已知橢圓SKIPIF1<0離心率為SKIPIF1<0,經(jīng)過SKIPIF1<0的左焦點(diǎn)SKIPIF1<0斜率為1的直線與SKIPIF1<0軸正半軸相交于點(diǎn)SKIPIF1<0,且SKIPIF1<0.(1)求SKIPIF1<0的方程;(2)設(shè)M,N是SKIPIF1<0上異于SKIPIF1<0的兩點(diǎn),若SKIPIF1<0,求SKIPIF1<0面積的最大值.題型三:齊次化解決定值定點(diǎn)問題1已知橢圓C:SKIPIF1<0(a>b>0),四點(diǎn)P1(1,1),P2(0,1),P3(–1,SKIPIF1<0),P4(1,SKIPIF1<0)中恰有三點(diǎn)在橢圓C上.(Ⅰ)求C的方程;(Ⅱ)設(shè)直線l不經(jīng)過P2點(diǎn)且與C相交于A,B兩點(diǎn).若直線P2A與直線P2B的斜率的和為–1,證明:l過定點(diǎn).【答案】(1)SKIPIF1<0.(2)證明見解析.解題方法一:試題解析:(1)由于SKIPIF1<0,SKIPIF1<0兩點(diǎn)關(guān)于y軸對稱,故由題設(shè)知C經(jīng)過SKIPIF1<0,SKIPIF1<0兩點(diǎn).又由SKIPIF1<0知,C不經(jīng)過點(diǎn)P1,所以點(diǎn)P2在C上.因此SKIPIF1<0,解得SKIPIF1<0.故C的方程為SKIPIF1<0.(2)設(shè)直線P2A與直線P2B的斜率分別為k1,k2,如果l與x軸垂直,設(shè)l:x=t,由題設(shè)知SKIPIF1<0,且SKIPIF1<0,可得A,B的坐標(biāo)分別為(t,SKIPIF1<0),(t,SKIPIF1<0).則SKIPIF1<0,得SKIPIF1<0,不符合題設(shè).從而可設(shè)l:SKIPIF1<0(SKIPIF1<0).將SKIPIF1<0代入SKIPIF1<0得SKIPIF1<0由題設(shè)可知SKIPIF1<0.設(shè)A(x1,y1),B(x2,y2),則x1+x2=SKIPIF1<0,x1x2=SKIPIF1<0.而SKIPIF1<0SKIPIF1<0SKIPIF1<0.由題設(shè)SKIPIF1<0,故SKIPIF1<0.即SKIPIF1<0.解得SKIPIF1<0.當(dāng)且僅當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,欲使l:SKIPIF1<0,即SKIPIF1<0,所以l過定點(diǎn)(2,SKIPIF1<0)解題方法二:齊次化處理:1.已知橢圓C:SKIPIF1<0的離心率為SKIPIF1<0,且過點(diǎn)SKIPIF1<0.(1)求SKIPIF1<0的方程:(2)點(diǎn)SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為垂足.證明:存在定點(diǎn)SKIPIF1<0,使得SKIPIF1<0為定值.題型四:一般的定值定點(diǎn)問題1.已知SKIPIF1<0為雙曲線SKIPIF1<0的左?右焦點(diǎn),SKIPIF1<0的一條漸近線方程為SKIPIF1<0為SKIPIF1<0上一點(diǎn),且SKIPIF1<0.(1)求SKIPIF1<0的方程;(2)設(shè)點(diǎn)SKIPIF1<0在坐標(biāo)軸上,直線SKIPIF1<0與SKIPIF1<0交于異于SKIPIF1<0的SKIPIF1<0兩點(diǎn),SKIPIF1<0為SKIPIF1<0的中點(diǎn),且SKIPIF1<0,過SKIPIF1<0作SKIPIF1<0,垂足為SKIPIF1<0,是否存在點(diǎn)SKIPIF1<0,使得SKIPIF1<0為定值?若存在,求出點(diǎn)SKIPIF1<0的坐標(biāo)以及SKIPIF1<0的長度;若不存在,請說明理由.【答案】(1)SKIPIF1<0(2)存在;點(diǎn)SKIPIF1<0,SKIPIF1<0為定值SKIPIF1<0【詳解】(1)由題意,在雙曲線SKIPIF1<0中,漸近線方程為SKIPIF1<0,由條件可知SKIPIF1<0.根據(jù)雙曲線的定義可知,SKIPIF1<0,∴SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0.(2)由題意及(1)得,在SKIPIF1<0中,SKIPIF1<0,∴點(diǎn)SKIPIF1<0在雙曲線SKIPIF1<0的左支上,當(dāng)點(diǎn)SKIPIF1<0在坐標(biāo)軸上,則點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,設(shè)SKIPIF1<0,當(dāng)SKIPIF1<0的斜率存在時(shí),設(shè)SKIPIF1<0的方程為SKIPIF1<0,聯(lián)立SKIPIF1<0,整理得SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0為SKIPIF1<0的中點(diǎn),且SKIPIF1<0,∴SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0,整理得SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,驗(yàn)證均滿足SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),直線SKIPIF1<0的方程為SKIPIF1<0,則直線SKIPIF1<0過點(diǎn)SKIPIF1<0,不合題意,舍去;當(dāng)SKIPIF1<0時(shí),直線SKIPIF1<0的方程為SKIPIF1<0,則直線SKIPIF1<0過定點(diǎn)SKIPIF1<0,符合題意.當(dāng)直線SKIPIF1<0的斜率不存在時(shí),由SKIPIF1<0,可設(shè)直線SKIPIF1<0的方程為SKIPIF1<0,聯(lián)立SKIPIF1<0,解得SKIPIF1<0,所以直線SKIPIF1<0的方程為:SKIPIF1<0,則直線SKIPIF1<0過定點(diǎn)SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0是以SKIPIF1<0為斜邊的直角三角形,∴點(diǎn)SKIPIF1<0在以SKIPIF1<0為直徑的圓上,則當(dāng)SKIPIF1<0為該圓的圓心SKIPIF1<0時(shí),SKIPIF1<0為該圓的半徑,即SKIPIF1<0,故存在點(diǎn)SKIPIF1<0,使得SKIPIF1<0為定值SKIPIF1<0.1已知雙曲線SKIPIF1<0過點(diǎn)SKIPIF1<0,且SKIPIF1<0與SKIPIF1<0的兩個(gè)頂點(diǎn)連線的斜率之和為4.(1)求SKIPIF1<0的方程;(2)過點(diǎn)SKIPIF1<0的直線SKIPIF1<0與雙曲線SKIPIF1<0交于SKIPIF1<0,SKIPIF1<0兩點(diǎn)(異于點(diǎn)SKIPIF1<0).設(shè)直線SKIPIF1<0與SKIPIF1<0軸垂直且交直線SKIPIF1<0于點(diǎn)SKIPIF1<0,若線段SKIPIF1<0的中點(diǎn)為SKIPIF1<0,證明:直線SKIPIF1<0的斜率為定值,并求該定值.類型五非對稱問題1已知橢圓SKIPIF1<0的長軸長為6,離心率為SKIPIF1<0.(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)設(shè)橢圓C的左、右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,左、右頂點(diǎn)分別為A,B,點(diǎn)M,N為橢圓C上位于x軸上方的兩點(diǎn),且SKIPIF1<0,記直線AM,BN的斜率分別為SKIPIF1<0,且SKIPIF1<0,求直線SKIPIF1<0的方程.(1)SKIPIF1<0(2)SKIPIF1<0(1)由題意,可得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,聯(lián)立解得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(2)如圖,由(1)知SKIPIF1<0,SKIPIF1<0方程為SKIPIF1<0SKIPIF1<0,直線SKIPIF1<0與橢圓的另一個(gè)交點(diǎn)為SKIPIF1<0,∵SKIPIF1<0,根據(jù)對稱性可得SKIPIF1<0,聯(lián)立SKIPIF1<0,整理得SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0∵SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,聯(lián)立解得SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴直線SKIPIF1<0的方程為SKIPIF1<0,即SKIPIF1<0.1已知橢圓SKIPIF1<0過點(diǎn)SKIPIF1<0,且SKIPIF1<0.(Ⅰ)求橢圓C的方程:(Ⅱ)過點(diǎn)SKIPIF1<0的直線l交橢圓C于點(diǎn)SKIPIF1<0,直線SKIPIF1<0分別交直線SKIPIF1<0于點(diǎn)SKIPIF1<0.求SKIPIF1<0的值.類型六探究性問題1.已知雙曲線SKIPIF1<0的左右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,點(diǎn)SKIPIF1<0在直線SKIPIF1<0上且不在SKIPIF1<0軸上,直線SKIPIF1<0與雙曲線的交點(diǎn)分別為A,B,直線SKIPIF1<0與雙曲線的交點(diǎn)分別為C,D.(1)設(shè)直線SKIPIF1<0和SKIPIF1<0的斜率分別為SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0的值;(2)問直線l上是否存在點(diǎn)P,使得直線OA,OB,OC,OD的斜率SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0?若存在,求出所有滿足條件的點(diǎn)SKIPIF1<0的坐標(biāo);若不存在,請說明理由.解析:(1)SKIPIF1<0(2)存在,SKIPIF1<0或SKIPIF1<0(1)設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0;(2)假設(shè)直線l上存在點(diǎn)SKIPIF1<0,SKIPIF1<0.設(shè)SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0設(shè)SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0∴SKIPIF1<0,同理SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0得SKIPIF1<0或SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),由(1)SKIPIF1<0得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),由(1)SKIPIF1<0得SKIPIF1<0,SKIPIF1<0或SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,得SKIPIF1<0.所以SKIPIF1<0或SKIPIF1<0.1在直角坐標(biāo)平面中,SKIPIF1<0的兩個(gè)頂點(diǎn)的坐標(biāo)分別為SKIPIF1<0,兩動(dòng)點(diǎn)SKIPIF1<0滿足SKIPIF1<0,向量SKIPIF1<0與SKIPIF1<0共線.(1)求SKIPIF1<0的頂點(diǎn)SKIPIF1<0的軌跡方程;(2)若過點(diǎn)SKIPIF1<0的直線與(1)的軌跡相交于SKIPIF1<0兩點(diǎn),求SKIPIF1<0的取值范圍.(3)若SKIPIF1<0為SKIPIF1<0點(diǎn)的軌跡在第一象限內(nèi)的任意一點(diǎn),則是否存在常數(shù)SKIPIF1<0,使得SKIPIF1<0恒成立?若存在,求出SKIPIF1<0的值;若不存在,請說明理由.類型七切線問題與阿基米德三角形問題拋物線的弦與過弦的端點(diǎn)的兩條切線所圍的三角形,這個(gè)三角形又常被稱為阿基米德三角形.阿基米德三角形的得名,是因?yàn)榘⒒椎卤救俗钤缋帽平乃枷胱C明如下結(jié)論:拋物線與阿基米德三角形定理:拋物線的弦與拋物線所圍成的封閉圖形的面積,等于拋物線的弦與過弦的端點(diǎn)的兩條切線所圍成的三角形面積的三分之二.下面來逐一介紹阿基米德三角形的一些推論:如圖,已知SKIPIF1<0是拋物線SKIPIF1<0準(zhǔn)線上任意一點(diǎn),過SKIPIF1<0作拋物線的切線SKIPIF1<0、SKIPIF1<0兩點(diǎn),SKIPIF1<0中點(diǎn),則:1.若過焦點(diǎn),則的端點(diǎn)的兩條切線的交點(diǎn)SKIPIF1<0在其準(zhǔn)線上.2.阿基米德三角形底邊上的中線平行于坐標(biāo)軸,即SKIPIF1<0. 3.過拋物線的焦點(diǎn)4.SKIPIF1<05.阿基米德三角形面積的最小值為SKIPIF1<01如下圖,設(shè)拋物線方程為SKIPIF1<0,M為直線SKIPIF1<0上任意一點(diǎn),過SKIPIF1<0引拋物線的切線,切點(diǎn)分別為SKIPIF1<0,SKIPIF1<0.(Ⅰ)設(shè)線段SKIPIF1<0的中點(diǎn)為SKIPIF1<0;(ⅰ)求證:SKIPIF1<0平行于SKIPIF1<0軸;(ⅱ)已知當(dāng)SKIPIF1<0點(diǎn)的坐標(biāo)為SKIPIF1<0時(shí),SKIPIF1<0,求此時(shí)拋物線的方程;(Ⅱ)是否存在點(diǎn)SKIPIF1<0,使得點(diǎn)SKIPIF1<0關(guān)于直線SKIPIF1<0的對稱點(diǎn)SKIPIF1<0在拋物線SKIPIF1<0上,其中,點(diǎn)SKIPIF1<0滿足SKIPIF1<0(SKIPIF1<0為坐標(biāo)原點(diǎn)).若存在,求出所有適合題意的點(diǎn)SKIPIF1<0的坐標(biāo);若不存在,請說明理由.【答案】(Ⅰ)(?。┳C明見解析;(ⅱ)SKIPIF1<0或SKIPIF1<0;(Ⅱ)僅存在一點(diǎn)SKIPIF1<0適合題意.【分析】(Ⅰ)(?。┰O(shè)出SKIPIF1<0的坐標(biāo),利用導(dǎo)數(shù)求得切線SKIPIF1<0的方程,結(jié)合SKIPIF1<0是線段SKIPIF1<0的中點(diǎn)進(jìn)行化簡,得到SKIPIF1<0兩點(diǎn)的橫坐標(biāo)相等,由此證得SKIPIF1<0平行于SKIPIF1<0軸.(ⅱ)利用SKIPIF1<0列方程,解方程求得SKIPIF1<0,進(jìn)而求得拋物線方程.(Ⅱ)設(shè)出SKIPIF1<0點(diǎn)坐標(biāo),由SKIPIF1<0點(diǎn)坐標(biāo)求得線段SKIPIF1<0中點(diǎn)的坐標(biāo),由直線SKIPIF1<0的方程和拋物線的方程,求得SKIPIF1<0點(diǎn)的坐標(biāo),由此進(jìn)行分類討論求得SKIPIF1<0點(diǎn)的坐標(biāo).【詳解】(Ⅰ)(ⅰ)證明:由題意設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.由SKIPIF1<0得SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0.因此直線SKIPIF1<0的方程為SKIPIF1<0,直線SKIPIF1<0的方程為SKIPIF1<0.所以SKIPIF1<0,①SKIPIF1<0.②由①、②得SKIPIF1<0,因此SKIPIF1<0,即SKIPIF1<0,也即SKIPIF1<0.所以SKIPIF1<0平行于SKIPIF1<0軸.(ⅱ)解:由(ⅰ)知,當(dāng)SKIPIF1<0時(shí),將其代入①、②并整理得:SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0是方程SKIPIF1<0的兩根,因此SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0.由弦長公式的SKIPIF1<0.又SKIPIF1<0,所以SKIPIF1<0或SKIPIF1<0,因此所求拋物線方程為SKIPIF1<0或SKIPIF1<0.(Ⅱ)解:設(shè)SKIPIF1<0,由題意得SKIPIF1<0,則SKIPIF1<0的中點(diǎn)坐標(biāo)為SKIPIF1<0,設(shè)直線SKIPIF1<0的方程為SKIPIF1<0,由點(diǎn)SKIPIF1<0在直線SKIPIF1<0上,并注意到點(diǎn)SKIPIF1<0也在直線SKIPIF1<0上,代入得SKIPIF1<0.若SKIPIF1<0在拋物線上,則SKIPIF1<0,因此SKIPIF1<0或SKIPIF1<0.即SKIPIF1<0或SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),則SKIPIF1<0,此時(shí),點(diǎn)SKIPIF1<0適合題意.(2)當(dāng)SKIPIF1<0,對于SKIPIF1<0,此時(shí)SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,矛盾.對于SKIPIF1<0,因?yàn)镾KIPIF1<0,此時(shí)直線SKIPIF1<0平行于SKIPIF1<0軸,又SKIPIF1<0,所以直線SKIPIF1<0與直線SKIPIF1<0不垂直,與題設(shè)矛盾,所以SKIPIF1<0時(shí),不存在符合題意得SKIPIF1<0點(diǎn).綜上所述,僅存在一點(diǎn)SKIPIF1<0適合題目如圖,設(shè)拋物線方程為SKIPIF1<0,SKIPIF1<0為直線SKIPIF1<0上任意一點(diǎn),過SKIPIF1<0引拋物線的切線,切點(diǎn)分別為SKIPIF1<0.(Ⅰ)求證:SKIPIF1<0三點(diǎn)的橫坐標(biāo)成等差數(shù)列;(Ⅱ)已知當(dāng)SKIPIF1<0點(diǎn)的坐標(biāo)為SKIPIF1<0時(shí),SKIPIF1<0.求此時(shí)拋物線的方程;yxBAOMSKIPIF1<0(Ⅲ)是否存在點(diǎn)SKIPIF1<0,使得點(diǎn)SKIPIF1<0關(guān)于直線SKIPIF1<0的對稱點(diǎn)SKIPIF1<0在拋物線SKIPIF1<0上,其中,點(diǎn)SKIPIF1<0滿足SKIPIF1<0(SKIPIF1<0為坐標(biāo)原點(diǎn)).若存在,求出所有適合題意的點(diǎn)SKIPIF1<0的坐標(biāo);若不存在,請說明理由.yxBAOMSKIPIF1<0類型八極點(diǎn)極限調(diào)和點(diǎn)列蝴蝶模型1.極點(diǎn)和極線的幾何定義如圖,SKIPIF1<0為不在圓錐曲線SKIPIF1<0上的點(diǎn),過點(diǎn)SKIPIF1<0引兩條割線依次交圓錐曲線于四點(diǎn)SKIPIF1<0,連接SKIPIF1<0交于SKIPIF1<0,連接SKIPIF1<0交于SKIPIF1<0,我們稱點(diǎn)SKIPIF1<0為直線SKIPIF1<0關(guān)于圓錐曲線SKIPIF1<0的極點(diǎn),稱直線SKIPIF1<0為點(diǎn)SKIPIF1<0關(guān)于圓錐曲線SKIPIF1<0的極線.直線SKIPIF1<0交圓錐曲線SKIPIF1<0于SKIPIF1<0兩點(diǎn),則SKIPIF1<0為圓錐曲線SKIPIF1<0的兩條切線.若SKIPIF1<0在圓錐曲線SKIPIF1<0上,則過點(diǎn)SKIPIF1<0的切線即為極線.(1)自極三角形:極點(diǎn)SKIPIF1<0一一極線SKIPIF1<0;極點(diǎn)SKIPIF1<0一一極線SKIPIF1<0極點(diǎn)SKIPIF1<0一一極線SKIPIF1<0;即SKIPIF1<0中,三個(gè)頂點(diǎn)和對邊分別為一對極點(diǎn)和極線,稱SKIPIF1<0為“自極三角形”.(2)極點(diǎn)和極線的兩種特殊情況(1)當(dāng)四邊形變成三角形時(shí):曲線上的點(diǎn)SKIPIF1<0對應(yīng)的極線,就是切線SKIPIF1<0;
(2)當(dāng)四邊有一組對邊平行時(shí),如:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0和SKIPIF1<0的交點(diǎn)SKIPIF1<0落在無窮遠(yuǎn)處;點(diǎn)SKIPIF1<0的極線SKIPIF1<0和點(diǎn)SKIPIF1<0的極線SKIPIF1<0滿足:SKIPIF1<02.極點(diǎn)和極線的代數(shù)定義對于定點(diǎn)SKIPIF1<0與非退化二次曲線SKIPIF1<0過點(diǎn)SKIPIF1<0作動(dòng)直線與曲線SKIPIF1<0交于點(diǎn)SKIPIF1<0與點(diǎn)SKIPIF1<0,那么點(diǎn)SKIPIF1<0關(guān)于線段SKIPIF1<0的調(diào)和點(diǎn)SKIPIF1<0的軌跡是什么?可以證明:點(diǎn)SKIPIF1<0在一條定直線SKIPIF1<0上,如下圖.我們稱點(diǎn)SKIPIF1<0為直線SKIPIF1<0關(guān)于曲線SKIPIF1<0的極點(diǎn);相應(yīng)地,稱直線SKIPIF1<0為點(diǎn)SKIPIF1<0關(guān)于曲線SKIPIF1<0的極線.一般地,對于圓錐曲線SKIPIF1<0設(shè)極點(diǎn)SKIPIF1<0,則對應(yīng)的極線為 SKIPIF1<0【注】替換規(guī)則為:SKIPIF1<0(1)橢圓SKIPIF1<0的三類極點(diǎn)極線(1)若極點(diǎn)SKIPIF1<0在橢圓外,過點(diǎn)SKIPIF1<0作橢圓的兩條?線,切點(diǎn)為SKIPIF1<0,則極線為切點(diǎn)弦所在直線 SKIPIF1<0(2)若極點(diǎn)SKIPIF1<0在橢圓上,過點(diǎn)SKIPIF1<0作橢圓的切線SKIPIF1<0,則極線為切線SKIPIF1<0;(3)若極點(diǎn)SKIPIF1<0在橢圓內(nèi),過點(diǎn)SKIPIF1<0作橢圓的弦SKIPIF1<0,分別過SKIPIF1<0作橢圓切線,則切線交點(diǎn)軌跡為極線SKIPIF1<0由此可得橢圓極線的幾何作法:(2)對于雙曲線SKIPIF1<0,極點(diǎn)SKIPIF1<0對應(yīng)的極線為SKIPIF1<0(3)對于拋物線SKIPIF1<0,極點(diǎn)SKIPIF1<0對應(yīng)的極線為SKIPIF1<0.3.極點(diǎn)和極線的性質(zhì)(1)引理:已知橢圓方程為SKIPIF1<0,直線SKIPIF1<0的方程為SKIPIF1<0,點(diǎn)SKIPIF1<0不與原點(diǎn)重合.過點(diǎn)SKIPIF1<0作直線交橢圓于SKIPIF1<0兩點(diǎn),SKIPIF1<0點(diǎn)在直線SKIPIF1<0上,則“點(diǎn)SKIPIF1<0在直線SKIPIF1<0上"的充要條件是SKIPIF1<0調(diào)和分割SKIPIF1<0,即SKIPIF1<0.1設(shè)橢圓C:x2a2(1)求敉圓C的方程;(2)當(dāng)過點(diǎn)P(4,1)的動(dòng)直線l于橢圓C相交于兩不同點(diǎn)A,B時(shí),在線段AB上取點(diǎn)Q,滿足|【答案】(1)x2【解析】(1)由題意得:SKIPIF1<0,解得SKIPIF1<0,所求橢圓方程為x24+y22=1.(2)解法1:定比點(diǎn)差法設(shè)點(diǎn)Q、A由題設(shè)知|AP|,|PB|,|AQ|,|又A,P于是4=x從而:4x=x又點(diǎn)A、B在橢圓x1x2(1)+(2)×2,并結(jié)合(3)(4)得4x即點(diǎn)Q(x,解法2:構(gòu)造同構(gòu)式設(shè)點(diǎn)Q(由題設(shè)知|AP|,|PB又A,P于是x1=4?由于Ax1,y1,B整理得:x2x2(4)-(3)得:8(2x即點(diǎn)Q(x,解法3:極點(diǎn)極線由|AP|?|QB說明點(diǎn)P,Q關(guān)于桞圓調(diào)和共軛,點(diǎn)Q在點(diǎn)此極線方程為4?x4+故點(diǎn)Q總在直線2x如圖,過直線l:5x?7y?70=0上的點(diǎn)P作橢圓x225+y(1)當(dāng)點(diǎn)P在直線l上運(yùn)動(dòng)時(shí),證明:直線MN恒過定點(diǎn)Q;(2)當(dāng)MN//l時(shí),定點(diǎn)Q平分線段蝴蝶定理(ButterflyTheorem),是古代歐氏平面幾何中最精彩的結(jié)果之一.這個(gè)命題最早出現(xiàn)在1815年,由W.G.霍納提出證明.【蝴蝶定理】M是⊙O中弦AB的中點(diǎn),過點(diǎn)M的兩條弦CD,EF,連接DE,CF交AB于P問題中的圖形酷似圓中翩翩起舞的蝴蝶,因此而被冠之“蝴蝶定理".蝴蝶定理還可以推廣到橢圓,甚至雙曲線與拋物線中.例題.如圖,O為坐標(biāo)原點(diǎn),橢圓C:x2a2+y(1)求橢圓C的方程;(2)過點(diǎn)P(0,1)作直線l交橢圓C于異于M,N的A,B兩點(diǎn),直線AM,類型九不聯(lián)立問題1已知點(diǎn)SKIPIF1<0在雙曲線SKIPIF1<0上,直線SKIPIF1<0交SKIPIF1<0于SKIPIF1<0,SKIPIF1<0兩點(diǎn),直線SKIPIF1<0,SKIPIF1<0的斜率之和為0.(1)求SKIPIF1<0的斜率;(2)若SKIPIF1<0,求SKIPIF1<0的面積.解析:(1)設(shè)SKIPIF1<0,由點(diǎn)SKIPIF1<0都在雙曲線SKIPIF1<0上,得,,所以,結(jié)合斜率公式,相減后變形,可得:,.因?yàn)橹本€SKIPIF1<0的斜率之和為SKIPIF1<0,即SKIPIF1<0,所以,由得.②由得.③由②-③,得,從而,即SKIPIF1<0的斜率為SKIPIF1<0.1已知橢圓C:SKIPIF1<0的離心率為SKIPIF1<0,且過點(diǎn)SKIPIF1<0.(1)求SKIPIF1<0的方程:(2)點(diǎn)SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為垂足.證明:存在定點(diǎn)SKIPIF1<0,使得SKIPIF1<0為定值.類型十與其他知識點(diǎn)交叉問題某電廠冷卻塔的外形是由SKIPIF1<0雙曲線的一部分繞其虛軸所在的直線旋轉(zhuǎn)所形成的曲面.如圖所示,已知它的最小半徑為SKIPIF1<0,上口半徑為SKIPIF1<0,下口半徑為SKIPIF1<0,高為SKIPIF1<0,選擇適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系.(1)求此雙曲線SKIPIF1<0的方程;(2)定義:以(1)中求出的雙曲線SKIPIF1<0的實(shí)軸為虛軸,以SKIPIF1<0的虛軸為實(shí)軸的雙曲線SKIPIF1<0叫做SKIPIF1<0的共軛雙曲線,求雙曲線SKIPIF1<0的方程;(3)對于(2)中的雙曲線SKIPIF1<0?SKIPIF1<0的離心率分別為SKIPIF1<0?SKIPIF1<0,寫出SKIPIF1<0與SKIPIF1<0滿足的一個(gè)關(guān)系式,并證明.【答案】(1)SKIPIF1<0(2)SKIPIF1<0(3)SKIPIF1<0(1)以冷卻塔的軸截面的最窄處所在的直線為SKIPIF1<0軸,垂直平分線為SKIPIF1<0軸建立平面直角坐標(biāo)系,設(shè)雙曲線的方程為SKIPIF1<0,由題意知SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,所以雙曲線SKIPIF1<0的方程為SKIPIF1<0.(2)以(1)中求出的雙曲線SKIPIF1<0的實(shí)軸為虛軸,以SKIPIF1<0的虛軸為實(shí)軸的雙曲線SKIPIF1<0為SKIPIF1<0.(3)SKIPIF1<0與SKIPIF1<0滿足的一個(gè)關(guān)系式為SKIPIF1<0,證明如下,雙曲線SKIPIF1<0的半焦距SKIPIF1<0,所以雙曲線SKIPIF1<0的離心率為SKIPIF1<0,雙曲線SKIPIF1<0的半焦距SKIPIF1<0,所以雙曲線SKIPIF1<0的離心率為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0與SKIPIF1<0滿足的一個(gè)關(guān)系式為SKIPIF1<0.1在平面直角坐標(biāo)系SKIPIF1<0中,對于直線SKIPIF1<0和點(diǎn)SKIPIF1<0、SKIPIF1<0,記SKIPIF1<0,若SKIPIF1<0,則稱點(diǎn)SKIPIF1<0、SKIPIF1<0被直線SKIPIF1<0分隔,若曲線SKIPIF1<0與直線SKIPIF1<0沒有公共點(diǎn),且曲線SKIPIF1<0上存在點(diǎn)SKIPIF1<0、SKIPIF1<0被直線SKIPIF1<0分隔,則稱直線SKIPIF1<0為曲線SKIPIF1<0的一條分隔線.(1)判斷點(diǎn)SKIPIF1<0是否被直線SKIPIF1<0分隔并證明;(2)若直線SKIPIF1<0是曲線SKIPIF1<0的分隔線,求實(shí)數(shù)SKIPIF1<0的取值范圍;(3)動(dòng)點(diǎn)SKIPIF1<0到點(diǎn)SKIPIF1<0的距離與到SKIPIF1<0軸的距離之積為SKIPIF1<0,設(shè)點(diǎn)SKIPIF1<0的軌跡為曲線SKIPIF1<0,求證:通過原點(diǎn)的直線中,有且僅有一條直線是SKIPIF1<0的分隔線.1.(2022·北京海淀·??寄M預(yù)測)橢圓C:SKIPIF1<0的右頂點(diǎn)為SKIPIF1<0,離心率為SKIPIF1<0(1)求橢圓C的方程及短軸長;(2)已知:過定點(diǎn)SKIPIF1<0作直線l交橢圓C于D,E兩點(diǎn),過E作AB的平行線交直線DB于點(diǎn)F,設(shè)EF中點(diǎn)為G,直線BG與橢圓的另一點(diǎn)交點(diǎn)為M,若四邊形BEMF為平行四邊形,求G點(diǎn)坐標(biāo).2.(2022·北京·統(tǒng)考模擬預(yù)測)如圖所示,過原點(diǎn)O作兩條互相垂直的線OA,OB分別交拋物線SKIPIF1<0于A,B兩點(diǎn),連接AB,交y軸于點(diǎn)P.(1)求點(diǎn)P的坐標(biāo);(2)證明:存在相異于點(diǎn)P的定點(diǎn)T,使得SKIPIF1<0恒成立,請求出點(diǎn)T的坐標(biāo),并求出SKIPIF1<0面積的最小值.3.(2023·湖北武漢·統(tǒng)考模擬預(yù)測)過坐標(biāo)原點(diǎn)SKIPIF1<0作圓SKIPIF1<0的兩條切線,設(shè)切點(diǎn)為SKIPIF1<0,直線SKIPIF1<0恰為拋物SKIPIF1<0的準(zhǔn)線.(1)求拋物線SKIPIF1<0的標(biāo)準(zhǔn)方程;(2)設(shè)點(diǎn)SKIPIF1<0是圓SKIPIF1<0上的動(dòng)點(diǎn),拋物線SKIPIF1<0上四點(diǎn)SKIPIF1<0滿足:SKIPIF1<0,設(shè)SKIPIF1<0中點(diǎn)為SKIPIF1<0.(i)求直線SKIPIF1<0的斜率;(ii)設(shè)SKIPIF1<0面積為SKIPIF1<0,求SKIPIF1<0的最大值.4.(2022·江蘇南京·模擬預(yù)測)在平面直角坐標(biāo)系xOy中,拋物線SKIPIF1<0.SKIPIF1<0,SKIPIF1<0為C上兩點(diǎn),且SKIPIF1<0,SKIPIF1<0分別在第一、四象限.直線SKIPIF1<0與x正半軸交于SKIPIF1<0,與y負(fù)半軸交于SKIPIF1<0.(1)若SKIPIF1<0,求SKIPIF1<0橫坐標(biāo)的取值范圍;(2)記SKIPIF1<0的重心為G,直線SKIPIF1<0,SKIPIF1<0的斜率分別為SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0.若SKIPIF1<0,證明:λ為定值.5.(2023河北·校聯(lián)考三模)已知拋物線SKIPIF1<0的焦點(diǎn)為SKIPIF1<0,過SKIPIF1<0且斜率為SKIPIF1<0的直線SKIPIF1<0與SKIPIF1<0交于SKIPIF1<0兩點(diǎn),斜率為SKIPIF1<0的直線SKIPIF1<0與SKIPIF1<0相切于點(diǎn)SKIPIF1<0,且SKIPIF1<0與SKIPIF1<0不垂直,SKIPIF1<0為SKIPIF1<0的中點(diǎn).(1)若SKIPIF1<0,求SKIPIF1<0;(2)若直線SKIPIF1<0過SKIPIF1<0,求SKIPIF1<0.6.(2023·山東泰安·統(tǒng)考一模)已知橢圓SKIPIF1<0:SKIPIF1<0的左,右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,離心率為SKIPIF1<0,SKIPIF1<0是橢圓SKIPIF1<0上不同的兩點(diǎn),且點(diǎn)SKIPIF1<0在SKIPIF1<0軸上方,SKIPIF1<0,直線SKIPIF1<0,SKIPIF1<0交于點(diǎn)SKIPIF1<0.已知當(dāng)SKIPIF1<0軸時(shí),SKIPIF1<0.(1)求橢圓SKIPIF1<0的方程;(2)求證:點(diǎn)SKIPIF1<0在以SKIPIF1<0,SKIPIF1<0為焦點(diǎn)的定橢圓上..7.(2023·河北邢臺·校聯(lián)考模擬預(yù)測)已知雙曲線SKIPIF1<0過點(diǎn)SKIPIF1<0,且SKIPIF1<0與SKIPIF1<0的兩個(gè)頂點(diǎn)連線的斜率之和為4.(1)求SKIPIF1<0的方程;(2)過點(diǎn)SKIPIF1<0的直線SKIPIF1<0與雙曲線SKIPIF1<0交于SKIPIF1<0,SKIPIF1<0兩點(diǎn)(異于點(diǎn)SKIPIF1<0).設(shè)直線SKIPIF1<0與SKIPIF1<0軸垂直且交直線SKIPIF1<0于點(diǎn)SKIPIF1<0,若線段SKIPIF1<
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025教師公寓出租合同樣本
- 2025車輛承包合同范本
- 電信詐騙的分析與對策
- 科技節(jié)慶活動(dòng)的多元策劃與實(shí)施經(jīng)驗(yàn)
- 趣味數(shù)學(xué)課堂寓教于樂的秘密武器
- 2024年智慧物流投資申請報(bào)告
- 2024年農(nóng)業(yè)運(yùn)輸機(jī)械項(xiàng)目資金籌措計(jì)劃書代可行性研究報(bào)告
- 二零二五年度酒店客房預(yù)訂取消退款合同4篇
- 二零二五年度創(chuàng)業(yè)型企業(yè)環(huán)保設(shè)施改造升級與合規(guī)審查合同4篇
- 2025年北師大版九年級生物上冊階段測試試卷
- 2025年上半年江蘇連云港灌云縣招聘“鄉(xiāng)村振興專干”16人易考易錯(cuò)模擬試題(共500題)試卷后附參考答案
- DB3301T 0382-2022 公共資源交易開評標(biāo)數(shù)字見證服務(wù)規(guī)范
- 人教版2024-2025學(xué)年八年級上學(xué)期數(shù)學(xué)期末壓軸題練習(xí)
- 江蘇省無錫市2023-2024學(xué)年八年級上學(xué)期期末數(shù)學(xué)試題(原卷版)
- 俄語版:中國文化概論之中國的傳統(tǒng)節(jié)日
- 2022年湖南省公務(wù)員錄用考試《申論》真題(縣鄉(xiāng)卷)及答案解析
- 婦科一病一品護(hù)理匯報(bào)
- 哪吒之魔童降世
- 2022年上海市各區(qū)中考一模語文試卷及答案
- 2024年全國統(tǒng)一高考數(shù)學(xué)試卷(新高考Ⅱ)含答案
- 我國無菌包裝行業(yè)消費(fèi)量已超千億包-下游需求仍存擴(kuò)容潛力
評論
0/150
提交評論