揭陽真理中學(xué)2024屆中考一模數(shù)學(xué)試題含解析_第1頁
揭陽真理中學(xué)2024屆中考一模數(shù)學(xué)試題含解析_第2頁
揭陽真理中學(xué)2024屆中考一模數(shù)學(xué)試題含解析_第3頁
揭陽真理中學(xué)2024屆中考一模數(shù)學(xué)試題含解析_第4頁
揭陽真理中學(xué)2024屆中考一模數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩25頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

揭陽真理中學(xué)2024屆中考一模數(shù)學(xué)試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.解分式方程時(shí),去分母后變形為A. B.C. D.2.如圖,正方形ABCD中,對(duì)角線AC、BD交于點(diǎn)O,∠BAC的平分線交BD于E,交BC于F,BH⊥AF于H,交AC于G,交CD于P,連接GE、GF,以下結(jié)論:①△OAE≌△OBG;②四邊形BEGF是菱形;③BE=CG;④﹣1;⑤S△PBC:S△AFC=1:2,其中正確的有()個(gè).A.2 B.3 C.4 D.53.如圖,在△ABC中,點(diǎn)D,E分別在邊AB,AC上,且AEAB=ADA.1:3B.1:2C.1:3D.4.二次函數(shù)的最大值為()A.3 B.4C.5 D.65.如圖是由7個(gè)同樣大小的正方體擺成的幾何體.將正方體①移走后,所得幾何體()A.主視圖不變,左視圖不變B.左視圖改變,俯視圖改變C.主視圖改變,俯視圖改變D.俯視圖不變,左視圖改變6.二次函數(shù)y=﹣(x+2)2﹣1的圖象的對(duì)稱軸是()A.直線x=1 B.直線x=﹣1 C.直線x=2 D.直線x=﹣27.如圖,一束平行太陽光線FA、GB照射到正五邊形ABCDE上,∠ABG=46°,則∠FAE的度數(shù)是()A.26°. B.44°. C.46°. D.72°8.如圖,在直角坐標(biāo)系xOy中,若拋物線l:y=﹣x2+bx+c(b,c為常數(shù))的頂點(diǎn)D位于直線y=﹣2與x軸之間的區(qū)域(不包括直線y=﹣2和x軸),則l與直線y=﹣1交點(diǎn)的個(gè)數(shù)是()A.0個(gè) B.1個(gè)或2個(gè)C.0個(gè)、1個(gè)或2個(gè) D.只有1個(gè)9.(2017?鄂州)如圖四邊形ABCD中,AD∥BC,∠BCD=90°,AB=BC+AD,∠DAC=45°,E為CD上一點(diǎn),且∠BAE=45°.若CD=4,則△ABE的面積為()A.127B.247C.4810.將一把直尺和一塊含30°和60°角的三角板ABC按如圖所示的位置放置,如果∠CDE=40°,那么∠BAF的大小為()A.10° B.15° C.20° D.25°二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.不等式組的解集為________.12.今年,某縣境內(nèi)跨湖高速進(jìn)入施工高峰期,交警隊(duì)為提醒出行車輛,在一些主要路口設(shè)立了交通路況警示牌(如圖).已知立桿AD高度是4m,從側(cè)面C點(diǎn)測(cè)得警示牌頂端點(diǎn)A和底端B點(diǎn)的仰角(∠ACD和∠BCD)分別是60°,45°.那么路況警示牌AB的高度為_____.13.如圖,AB是⊙O的直徑,點(diǎn)C在AB的延長(zhǎng)線上,CD與⊙O相切于點(diǎn)D,若∠C=20°,則∠CDA=°.14.如圖,Rt△ABC中,AC=3,BC=4,∠ACB=90°,P為AB上一點(diǎn),且AP=2BP,若點(diǎn)A繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°,則點(diǎn)P隨之運(yùn)動(dòng)的路徑長(zhǎng)是_________15.如圖,△ABC內(nèi)接于⊙O,AB是⊙O的直徑,點(diǎn)D在圓O上,BD=CD,AB=10,AC=6,連接OD交BC于點(diǎn)E,DE=______.16.如圖,矩形OABC的兩邊落在坐標(biāo)軸上,反比例函數(shù)y=的圖象在第一象限的分支過AB的中點(diǎn)D交OB于點(diǎn)E,連接EC,若△OEC的面積為12,則k=_____.三、解答題(共8題,共72分)17.(8分)在直角坐標(biāo)系中,過原點(diǎn)O及點(diǎn)A(8,0),C(0,6)作矩形OABC、連結(jié)OB,點(diǎn)D為OB的中點(diǎn),點(diǎn)E是線段AB上的動(dòng)點(diǎn),連結(jié)DE,作DF⊥DE,交OA于點(diǎn)F,連結(jié)EF.已知點(diǎn)E從A點(diǎn)出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度在線段AB上移動(dòng),設(shè)移動(dòng)時(shí)間為t秒.如圖1,當(dāng)t=3時(shí),求DF的長(zhǎng).如圖2,當(dāng)點(diǎn)E在線段AB上移動(dòng)的過程中,∠DEF的大小是否發(fā)生變化?如果變化,請(qǐng)說明理由;如果不變,請(qǐng)求出tan∠DEF的值.連結(jié)AD,當(dāng)AD將△DEF分成的兩部分的面積之比為1:2時(shí),求相應(yīng)的t的值.18.(8分)如圖1,拋物線l1:y=﹣x2+bx+3交x軸于點(diǎn)A、B,(點(diǎn)A在點(diǎn)B的左側(cè)),交y軸于點(diǎn)C,其對(duì)稱軸為x=1,拋物線l2經(jīng)過點(diǎn)A,與x軸的另一個(gè)交點(diǎn)為E(5,0),交y軸于點(diǎn)D(0,﹣5).(1)求拋物線l2的函數(shù)表達(dá)式;(2)P為直線x=1上一動(dòng)點(diǎn),連接PA、PC,當(dāng)PA=PC時(shí),求點(diǎn)P的坐標(biāo);(3)M為拋物線l2上一動(dòng)點(diǎn),過點(diǎn)M作直線MN∥y軸(如圖2所示),交拋物線l1于點(diǎn)N,求點(diǎn)M自點(diǎn)A運(yùn)動(dòng)至點(diǎn)E的過程中,線段MN長(zhǎng)度的最大值.19.(8分)如圖,一次函數(shù)y=kx+b(k、b為常數(shù),k≠0)的圖象與x軸、y軸分別交于A、B兩點(diǎn),且與反比例函數(shù)y=nx(1)求一次函數(shù)與反比例函數(shù)的解析式;(2)記兩函數(shù)圖象的另一個(gè)交點(diǎn)為E,求△CDE的面積;(3)直接寫出不等式kx+b≤nx20.(8分)爸爸和小芳駕車去郊外登山,欣賞美麗的達(dá)子香(興安杜鵑),到了山下,爸爸讓小芳先出發(fā)6min,然后他再追趕,待爸爸出發(fā)24min時(shí),媽媽來電話,有急事,要求立即回去.于是爸爸和小芳馬上按原路下山返回(中間接電話所用時(shí)間不計(jì)),二人返回山下的時(shí)間相差4min,假設(shè)小芳和爸爸各自上、下山的速度是均勻的,登山過程中小芳和爸爸之間的距離s(單位:m)關(guān)于小芳出發(fā)時(shí)間t(單位:min)的函數(shù)圖象如圖,請(qǐng)結(jié)合圖象信息解答下列問題:(1)小芳和爸爸上山時(shí)的速度各是多少?(2)求出爸爸下山時(shí)CD段的函數(shù)解析式;(3)因山勢(shì)特點(diǎn)所致,二人相距超過120m就互相看不見,求二人互相看不見的時(shí)間有多少分鐘?21.(8分)已知反比例函數(shù)y=kx的圖象過點(diǎn)(1)試求該反比例函數(shù)的表達(dá)式;(2)M(m,n)是反比例函數(shù)圖象上的一動(dòng)點(diǎn),其中0<m<3,過點(diǎn)M作直線MB∥x軸,交y軸于點(diǎn)B;過點(diǎn)A作直線AC∥y軸,交x軸于點(diǎn)C,交直線MB于點(diǎn)D.當(dāng)四邊形OADM的面積為6時(shí),請(qǐng)判斷線段BM與DM的大小關(guān)系,并說明理由.22.(10分)如圖,菱形ABCD的邊長(zhǎng)為20cm,∠ABC=120°,對(duì)角線AC,BD相交于點(diǎn)O,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以4cm/s的速度,沿A→B的路線向點(diǎn)B運(yùn)動(dòng);過點(diǎn)P作PQ∥BD,與AC相交于點(diǎn)Q,設(shè)運(yùn)動(dòng)時(shí)間為t秒,0<t<1.(1)設(shè)四邊形PQCB的面積為S,求S與t的關(guān)系式;(2)若點(diǎn)Q關(guān)于O的對(duì)稱點(diǎn)為M,過點(diǎn)P且垂直于AB的直線l交菱形ABCD的邊AD(或CD)于點(diǎn)N,當(dāng)t為何值時(shí),點(diǎn)P、M、N在一直線上?(3)直線PN與AC相交于H點(diǎn),連接PM,NM,是否存在某一時(shí)刻t,使得直線PN平分四邊形APMN的面積?若存在,求出t的值;若不存在,請(qǐng)說明理由.23.(12分)如圖,四邊形ABCD的外接圓為⊙O,AD是⊙O的直徑,過點(diǎn)B作⊙O的切線,交DA的延長(zhǎng)線于點(diǎn)E,連接BD,且∠E=∠DBC.(1)求證:DB平分∠ADC;(2)若EB=10,CD=9,tan∠ABE=,求⊙O的半徑.24.如圖,在△ABC中,AB=BC,CD⊥AB于點(diǎn)D,CD=BD.BE平分∠ABC,點(diǎn)H是BC邊的中點(diǎn).連接DH,交BE于點(diǎn)G.連接CG.(1)求證:△ADC≌△FDB;(2)求證:(3)判斷△ECG的形狀,并證明你的結(jié)論.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解題分析】試題分析:方程,兩邊都乘以x-1去分母后得:2-(x+2)=3(x-1),故選D.考點(diǎn):解分式方程的步驟.2、C【解題分析】

根據(jù)AF是∠BAC的平分線,BH⊥AF,可證AF為BG的垂直平分線,然后再根據(jù)正方形內(nèi)角及角平分線進(jìn)行角度轉(zhuǎn)換證明EG=EB,F(xiàn)G=FB,即可判定②選項(xiàng);設(shè)OA=OB=OC=a,菱形BEGF的邊長(zhǎng)為b,由四邊形BEGF是菱形轉(zhuǎn)換得到CF=GF=BF,由四邊形ABCD是正方形和角度轉(zhuǎn)換證明△OAE≌△OBG,即可判定①;則△GOE是等腰直角三角形,得到GE=OG,整理得出a,b的關(guān)系式,再由△PGC∽△BGA,得到=1+,從而判斷得出④;得出∠EAB=∠GBC從而證明△EAB≌△GBC,即可判定③;證明△FAB≌△PBC得到BF=CP,即可求出,從而判斷⑤.【題目詳解】解:∵AF是∠BAC的平分線,∴∠GAH=∠BAH,∵BH⊥AF,∴∠AHG=∠AHB=90°,在△AHG和△AHB中,∴△AHG≌△AHB(ASA),∴GH=BH,∴AF是線段BG的垂直平分線,∴EG=EB,F(xiàn)G=FB,∵四邊形ABCD是正方形,∴∠BAF=∠CAF=×45°=22.5°,∠ABE=45°,∠ABF=90°,∴∠BEF=∠BAF+∠ABE=67.5°,∠BFE=90°﹣∠BAF=67.5°,∴∠BEF=∠BFE,∴EB=FB,∴EG=EB=FB=FG,∴四邊形BEGF是菱形;②正確;設(shè)OA=OB=OC=a,菱形BEGF的邊長(zhǎng)為b,∵四邊形BEGF是菱形,∴GF∥OB,∴∠CGF=∠COB=90°,∴∠GFC=∠GCF=45°,∴CG=GF=b,∠CGF=90°,∴CF=GF=BF,∵四邊形ABCD是正方形,∴OA=OB,∠AOE=∠BOG=90°,∵BH⊥AF,∴∠GAH+∠AGH=90°=∠OBG+∠AGH,∴∠OAE=∠OBG,在△OAE和△OBG中,∴△OAE≌△OBG(ASA),①正確;∴OG=OE=a﹣b,∴△GOE是等腰直角三角形,∴GE=OG,∴b=(a﹣b),整理得a=b,∴AC=2a=(2+)b,AG=AC﹣CG=(1+)b,∵四邊形ABCD是正方形,∴PC∥AB,∴===1+,∵△OAE≌△OBG,∴AE=BG,∴=1+,∴==1﹣,④正確;∵∠OAE=∠OBG,∠CAB=∠DBC=45°,∴∠EAB=∠GBC,在△EAB和△GBC中,∴△EAB≌△GBC(ASA),∴BE=CG,③正確;在△FAB和△PBC中,∴△FAB≌△PBC(ASA),∴BF=CP,∴====,⑤錯(cuò)誤;綜上所述,正確的有4個(gè),故選:C.【題目點(diǎn)撥】本題綜合考查了全等三角形的判定與性質(zhì),相似三角形,菱形的判定與性質(zhì)等四邊形的綜合題.該題難度較大,需要學(xué)生對(duì)有關(guān)于四邊形的性質(zhì)的知識(shí)有一系統(tǒng)的掌握.3、C【解題分析】∵AEAB∴△ABC∽△AED。∴SΔ∴SΔ4、C【解題分析】試題分析:先利用配方法得到y(tǒng)=﹣(x﹣1)2+1,然后根據(jù)二次函數(shù)的最值問題求解.解:y=﹣(x﹣1)2+1,∵a=﹣1<0,∴當(dāng)x=1時(shí),y有最大值,最大值為1.故選C.考點(diǎn):二次函數(shù)的最值.5、A【解題分析】

分別得到將正方體①移走前后的三視圖,依此即可作出判斷.【題目詳解】將正方體①移走前的主視圖為:第一層有一個(gè)正方形,第二層有四個(gè)正方形,正方體①移走后的主視圖為:第一層有一個(gè)正方形,第二層有四個(gè)正方形,沒有改變。將正方體①移走前的左視圖為:第一層有一個(gè)正方形,第二層有兩個(gè)正方形,正方體①移走后的左視圖為:第一層有一個(gè)正方形,第二層有兩個(gè)正方形,沒有發(fā)生改變。將正方體①移走前的俯視圖為:第一層有四個(gè)正方形,第二層有兩個(gè)正方形,正方體①移走后的俯視圖為:第一層有四個(gè)正方形,第二層有兩個(gè)正方形,發(fā)生改變。故選A.【題目點(diǎn)撥】考查了三視圖,從幾何體的正面,左面,上面看到的平面圖形中正方形的列數(shù)以及每列正方形的個(gè)數(shù)是解決本題的關(guān)鍵.6、D【解題分析】

根據(jù)二次函數(shù)頂點(diǎn)式的性質(zhì)解答即可.【題目詳解】∵y=﹣(x+2)2﹣1是頂點(diǎn)式,∴對(duì)稱軸是:x=-2,故選D.【題目點(diǎn)撥】本題考查二次函數(shù)頂點(diǎn)式y(tǒng)=a(x-h)2+k的性質(zhì),對(duì)稱軸為x=h,頂點(diǎn)坐標(biāo)為(h,k)熟練掌握頂點(diǎn)式的性質(zhì)是解題關(guān)鍵.7、A【解題分析】

先根據(jù)正五邊形的性質(zhì)求出∠EAB的度數(shù),再由平行線的性質(zhì)即可得出結(jié)論.【題目詳解】解:∵圖中是正五邊形.∴∠EAB=108°.∵太陽光線互相平行,∠ABG=46°,∴∠FAE=180°﹣∠ABG﹣∠EAB=180°﹣46°﹣108°=26°.故選A.【題目點(diǎn)撥】此題考查平行線的性質(zhì),多邊形內(nèi)角與外角,解題關(guān)鍵在于求出∠EAB.8、C【解題分析】

根據(jù)題意,利用分類討論的數(shù)學(xué)思想可以得到l與直線y=﹣1交點(diǎn)的個(gè)數(shù),從而可以解答本題.【題目詳解】∵拋物線l:y=﹣x2+bx+c(b,c為常數(shù))的頂點(diǎn)D位于直線y=﹣2與x軸之間的區(qū)域,開口向下,∴當(dāng)頂點(diǎn)D位于直線y=﹣1下方時(shí),則l與直線y=﹣1交點(diǎn)個(gè)數(shù)為0,當(dāng)頂點(diǎn)D位于直線y=﹣1上時(shí),則l與直線y=﹣1交點(diǎn)個(gè)數(shù)為1,當(dāng)頂點(diǎn)D位于直線y=﹣1上方時(shí),則l與直線y=﹣1交點(diǎn)個(gè)數(shù)為2,故選C.【題目點(diǎn)撥】考查拋物線與x軸的交點(diǎn)、二次函數(shù)的性質(zhì),解答本題的關(guān)鍵是明確題意,利用函數(shù)的思想和分類討論的數(shù)學(xué)思想解答.9、D【解題分析】解:如圖取CD的中點(diǎn)F,連接BF延長(zhǎng)BF交AD的延長(zhǎng)線于G,作FH⊥AB于H,EK⊥AB于K.作BT⊥AD于T.∵BC∥AG,∴∠BCF=∠FDG,∵∠BFC=∠DFG,F(xiàn)C=DF,∴△BCF≌△GDF,∴BC=DG,BF=FG,∵AB=BC+AD,AG=AD+DG=AD+BC,∴AB=AG,∵BF=FG,∴BF⊥BG,∠ABF=∠G=∠CBF,∵FH⊥BA,F(xiàn)C⊥BC,∴FH=FC,易證△FBC≌△FBH,△FAH≌△FAD,∴BC=BH,AD=AB,由題意AD=DC=4,設(shè)BC=TD=BH=x,在Rt△ABT中,∵AB2=BT2+AT2,∴(x+4)2=42+(4﹣x)2,∴x=1,∴BC=BH=TD=1,AB=5,設(shè)AK=EK=y,DE=z,∵AE2=AK2+EK2=AD2+DE2,BE2=BK2+KE2=BC2+EC2,∴42+z2=y2①,(5﹣y)2+y2=12+(4﹣z)2②,由①②可得y=207,∴S△ABE=12×5×207點(diǎn)睛:本題考查直角梯形的性質(zhì)、全等三角形的判定和性質(zhì)、角平分線的性質(zhì)定理、勾股定理、二元二次方程組等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,學(xué)會(huì)利用參數(shù),構(gòu)建方程解決問題,屬于中考?jí)狠S題.10、A【解題分析】

先根據(jù)∠CDE=40°,得出∠CED=50°,再根據(jù)DE∥AF,即可得到∠CAF=50°,最后根據(jù)∠BAC=60°,即可得出∠BAF的大?。绢}目詳解】由圖可得,∠CDE=40°,∠C=90°,∴∠CED=50°,又∵DE∥AF,∴∠CAF=50°,∵∠BAC=60°,∴∠BAF=60°?50°=10°,故選A.【題目點(diǎn)撥】本題考查了平行線的性質(zhì),熟練掌握這一點(diǎn)是解題的關(guān)鍵.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、x>1【解題分析】

分別求出兩個(gè)不等式的解集,再求其公共解集.【題目詳解】,解不等式①,得:x>1,解不等式②,得:x>-3,所以不等式組的解集為:x>1,故答案為:x>1.【題目點(diǎn)撥】本題考查一元一次不等式組的解法,屬于基礎(chǔ)題.求不等式組的解集,要遵循以下原則:同大取較大,同小取較小,小大大小中間找,大大小小解不了.12、m【解題分析】

由特殊角的正切值即可得出線段CD的長(zhǎng)度,在Rt△BDC中,由∠BCD=45°,得出CD=BD,求出BD長(zhǎng)度,再利用線段間的關(guān)系即可得出結(jié)論.【題目詳解】在Rt△ADC中,∠ACD=60°,AD=4∴tan60°==∴CD=∵在Rt△BCD中,∠BAD=45°,CD=∴BD=CD=.∴AB=AD-BD=4-=路況警示牌AB的高度為m.故答案為:m.【題目點(diǎn)撥】解直角三角形的應(yīng)用-仰角俯角問題.13、1.【解題分析】

連接OD,根據(jù)圓的切線定理和等腰三角形的性質(zhì)可得出答案.【題目詳解】連接OD,則∠ODC=90°,∠COD=70°,∵OA=OD,∴∠ODA=∠A=∠COD=35°,∴∠CDA=∠CDO+∠ODA=90°+35°=1°,故答案為1.考點(diǎn):切線的性質(zhì).14、π【解題分析】

作PD⊥BC,則點(diǎn)P運(yùn)動(dòng)的路徑長(zhǎng)是以點(diǎn)D為圓心,以PD為半徑,圓心角為60°的一段圓弧,根據(jù)相似三角形的判定與性質(zhì)求出PD的長(zhǎng),然后根據(jù)弧長(zhǎng)公式求解即可.【題目詳解】作PD⊥BC,則PD∥AC,∴△PBD~△ABC,∴PDAC∵AC=3,BC=4,∴AB=32∵AP=2BP,∴BP=13∴PD=5∴點(diǎn)P運(yùn)動(dòng)的路徑長(zhǎng)=60π×1180故答案為:π3【題目點(diǎn)撥】本題考查了相似三角形的判定與性質(zhì),弧長(zhǎng)的計(jì)算,根據(jù)相似三角形的判定與性質(zhì)求出PD的長(zhǎng)是解答本題的關(guān)鍵.15、1【解題分析】

先利用垂徑定理得到OD⊥BC,則BE=CE,再證明OE為△ABC的中位線得到,入境計(jì)算OD?OE即可.【題目詳解】解:∵BD=CD,∴,∴OD⊥BC,∴BE=CE,而OA=OB,∴OE為△ABC的中位線,∴,∴DE=OD-OE=5-3=1.故答案為1.【題目點(diǎn)撥】此題考查垂徑定理,中位線的性質(zhì),解題的關(guān)鍵在于利用中位線的性質(zhì)求解.16、12.【解題分析】

設(shè)AD=a,則AB=OC=2a,根據(jù)點(diǎn)D在反比例函數(shù)y=的圖象上,可得D點(diǎn)的坐標(biāo)為(a,),所以O(shè)A=;過點(diǎn)E作EN⊥OC于點(diǎn)N,交AB于點(diǎn)M,則OA=MN=,已知△OEC的面積為12,OC=2a,根據(jù)三角形的面積公式求得EN=,即可求得EM=;設(shè)ON=x,則NC=BM=2a-x,證明△BME∽△ONE,根據(jù)相似三角形的性質(zhì)求得x=,即可得點(diǎn)E的坐標(biāo)為(,),根據(jù)點(diǎn)E在在反比例函數(shù)y=的圖象上,可得·=k,解方程求得k值即可.【題目詳解】設(shè)AD=a,則AB=OC=2a,∵點(diǎn)D在反比例函數(shù)y=的圖象上,∴D(a,),∴OA=,過點(diǎn)E作EN⊥OC于點(diǎn)N,交AB于點(diǎn)M,則OA=MN=,∵△OEC的面積為12,OC=2a,∴EN=,∴EM=MN-EN=-=;設(shè)ON=x,則NC=BM=2a-x,∵AB∥OC,∴△BME∽△ONE,∴,即,解得x=,∴E(,),∵點(diǎn)E在在反比例函數(shù)y=的圖象上,∴·=k,解得k=,∵k>0,∴k=12.故答案為:12.【題目點(diǎn)撥】本題是反比例函數(shù)與幾何的綜合題,求得點(diǎn)E的坐標(biāo)為(,)是解決問題的關(guān)鍵.三、解答題(共8題,共72分)17、(1)3;(2)∠DEF的大小不變,tan∠DEF=;(3)或.【解題分析】

(1)當(dāng)t=3時(shí),點(diǎn)E為AB的中點(diǎn),∵A(8,0),C(0,6),∴OA=8,OC=6,∵點(diǎn)D為OB的中點(diǎn),∴DE∥OA,DE=OA=4,∵四邊形OABC是矩形,∴OA⊥AB,∴DE⊥AB,∴∠OAB=∠DEA=90°,又∵DF⊥DE,∴∠EDF=90°,∴四邊形DFAE是矩形,∴DF=AE=3;(2)∠DEF的大小不變;理由如下:作DM⊥OA于M,DN⊥AB于N,如圖2所示:∵四邊形OABC是矩形,∴OA⊥AB,∴四邊形DMAN是矩形,∴∠MDN=90°,DM∥AB,DN∥OA,∴,,∵點(diǎn)D為OB的中點(diǎn),∴M、N分別是OA、AB的中點(diǎn),∴DM=AB=3,DN=OA=4,∵∠EDF=90°,∴∠FDM=∠EDN,又∵∠DMF=∠DNE=90°,∴△DMF∽△DNE,∴,∵∠EDF=90°,∴tan∠DEF=;(3)作DM⊥OA于M,DN⊥AB于N,若AD將△DEF的面積分成1:2的兩部分,設(shè)AD交EF于點(diǎn)G,則點(diǎn)G為EF的三等分點(diǎn);①當(dāng)點(diǎn)E到達(dá)中點(diǎn)之前時(shí),如圖3所示,NE=3﹣t,由△DMF∽△DNE得:MF=(3﹣t),∴AF=4+MF=﹣t+,∵點(diǎn)G為EF的三等分點(diǎn),∴G(,),設(shè)直線AD的解析式為y=kx+b,把A(8,0),D(4,3)代入得:,解得:,∴直線AD的解析式為y=﹣x+6,把G(,)代入得:t=;②當(dāng)點(diǎn)E越過中點(diǎn)之后,如圖4所示,NE=t﹣3,由△DMF∽△DNE得:MF=(t﹣3),∴AF=4﹣MF=﹣t+,∵點(diǎn)G為EF的三等分點(diǎn),∴G(,),代入直線AD的解析式y(tǒng)=﹣x+6得:t=;綜上所述,當(dāng)AD將△DEF分成的兩部分的面積之比為1:2時(shí),t的值為或.考點(diǎn):四邊形綜合題.18、(1)拋物線l2的函數(shù)表達(dá)式;y=x2﹣4x﹣1;(2)P點(diǎn)坐標(biāo)為(1,1);(3)在點(diǎn)M自點(diǎn)A運(yùn)動(dòng)至點(diǎn)E的過程中,線段MN長(zhǎng)度的最大值為12.1.【解題分析】

(1)由拋物線l1的對(duì)稱軸求出b的值,即可得出拋物線l1的解析式,從而得出點(diǎn)A、點(diǎn)B的坐標(biāo),由點(diǎn)B、點(diǎn)E、點(diǎn)D的坐標(biāo)求出拋物線l2的解析式即可;(2)作CH⊥PG交直線PG于點(diǎn)H,設(shè)點(diǎn)P的坐標(biāo)為(1,y),求出點(diǎn)C的坐標(biāo),進(jìn)而得出CH=1,PH=|3﹣y|,PG=|y|,AG=2,由PA=PC可得PA2=PC2,由勾股定理分別將PA2、PC2用CH、PH、PG、AG表示,列方程求出y的值即可;(3)設(shè)出點(diǎn)M的坐標(biāo),求出兩個(gè)拋物線交點(diǎn)的橫坐標(biāo)分別為﹣1,4,①當(dāng)﹣1<x≤4時(shí),點(diǎn)M位于點(diǎn)N的下方,表示出MN的長(zhǎng)度為關(guān)于x的二次函數(shù),在x的范圍內(nèi)求二次函數(shù)的最值;②當(dāng)4<x≤1時(shí),點(diǎn)M位于點(diǎn)N的上方,同理求出此時(shí)MN的最大值,取二者較大值,即可得出MN的最大值.【題目詳解】(1)∵拋物線l1:y=﹣x2+bx+3對(duì)稱軸為x=1,∴x=﹣=1,b=2,∴拋物線l1的函數(shù)表達(dá)式為:y=﹣x2+2x+3,當(dāng)y=0時(shí),﹣x2+2x+3=0,解得:x1=3,x2=﹣1,∴A(﹣1,0),B(3,0),設(shè)拋物線l2的函數(shù)表達(dá)式;y=a(x﹣1)(x+1),把D(0,﹣1)代入得:﹣1a=﹣1,a=1,∴拋物線l2的函數(shù)表達(dá)式;y=x2﹣4x﹣1;(2)作CH⊥PG交直線PG于點(diǎn)H,設(shè)P點(diǎn)坐標(biāo)為(1,y),由(1)可得C點(diǎn)坐標(biāo)為(0,3),∴CH=1,PH=|3﹣y|,PG=|y|,AG=2,∴PC2=12+(3﹣y)2=y2﹣6y+10,PA2==y2+4,∵PC=PA,∴PA2=PC2,∴y2﹣6y+10=y2+4,解得y=1,∴P點(diǎn)坐標(biāo)為(1,1);(3)由題意可設(shè)M(x,x2﹣4x﹣1),∵M(jìn)N∥y軸,∴N(x,﹣x2+2x+3),令﹣x2+2x+3=x2﹣4x﹣1,可解得x=﹣1或x=4,①當(dāng)﹣1<x≤4時(shí),MN=(﹣x2+2x+3)﹣(x2﹣4x﹣1)=﹣2x2+6x+8=﹣2(x﹣)2+,顯然﹣1<≤4,∴當(dāng)x=時(shí),MN有最大值12.1;②當(dāng)4<x≤1時(shí),MN=(x2﹣4x﹣1)﹣(﹣x2+2x+3)=2x2﹣6x﹣8=2(x﹣)2﹣,顯然當(dāng)x>時(shí),MN隨x的增大而增大,∴當(dāng)x=1時(shí),MN有最大值,MN=2(1﹣)2﹣=12.綜上可知:在點(diǎn)M自點(diǎn)A運(yùn)動(dòng)至點(diǎn)E的過程中,線段MN長(zhǎng)度的最大值為12.1.【題目點(diǎn)撥】本題是二次函數(shù)與幾何綜合題,主要考查二次函數(shù)解析式的求解、勾股定理的應(yīng)用以及動(dòng)點(diǎn)求線段最值問題.19、(1)y=﹣2x+1;y=﹣80x【解題分析】

(1)根據(jù)OA、OB的長(zhǎng)寫出A、B兩點(diǎn)的坐標(biāo),再用待定系數(shù)法求解一次函數(shù)的解析式,然后求得點(diǎn)C的坐標(biāo),進(jìn)而求出反比例函數(shù)的解析式.(2)聯(lián)立方程組求解出交點(diǎn)坐標(biāo)即可.(3)觀察函數(shù)圖象,當(dāng)函數(shù)y=kx+b的圖像處于y=nx下方或與其有重合點(diǎn)時(shí),x的取值范圍即為【題目詳解】(1)由已知,OA=6,OB=1,OD=4,∵CD⊥x軸,∴OB∥CD,∴△ABO∽△ACD,∴,∴,∴CD=20,∴點(diǎn)C坐標(biāo)為(﹣4,20),∴n=xy=﹣80.∴反比例函數(shù)解析式為:y=﹣,把點(diǎn)A(6,0),B(0,1)代入y=kx+b得:,解得:.∴一次函數(shù)解析式為:y=﹣2x+1,(2)當(dāng)﹣=﹣2x+1時(shí),解得,x1=10,x2=﹣4,當(dāng)x=10時(shí),y=﹣8,∴點(diǎn)E坐標(biāo)為(10,﹣8),∴S△CDE=S△CDA+S△EDA=.(3)不等式kx+b≤,從函數(shù)圖象上看,表示一次函數(shù)圖象不低于反比例函數(shù)圖象,∴由圖象得,x≥10,或﹣4≤x<0.【題目點(diǎn)撥】本題考查了應(yīng)用待定系數(shù)法求一次函數(shù)和反比例函數(shù)解析式以及用函數(shù)的觀點(diǎn)通過函數(shù)圖像解不等式.20、(1)小芳上山的速度為20m/min,爸爸上山的速度為28m/min;(2)爸爸下山時(shí)CD段的函數(shù)解析式為y=12x﹣288(24≤x≤40);(3)二人互相看不見的時(shí)間有7.1分鐘.【解題分析】分析:(1)根據(jù)速度=路程÷時(shí)間可求出小芳上山的速度;根據(jù)速度=路程÷時(shí)間+小芳的速度可求出爸爸上山的速度;

(2)根據(jù)爸爸及小芳的速度結(jié)合點(diǎn)C的橫坐標(biāo)(6+24=30),可得出點(diǎn)C的坐標(biāo),由點(diǎn)D的橫坐標(biāo)比點(diǎn)E少4可得出點(diǎn)D的坐標(biāo),再根據(jù)點(diǎn)C、D的坐標(biāo)利用待定系數(shù)法可求出CD段的函數(shù)解析式;

(3)根據(jù)點(diǎn)D、E的坐標(biāo)利用待定系數(shù)法可求出DE段的函數(shù)解析式,分別求出CD、DE段縱坐標(biāo)大于120時(shí)x的取值范圍,結(jié)合兩個(gè)時(shí)間段即可求出結(jié)論.詳解:(1)小芳上山的速度為120÷6=20(m/min),爸爸上山的速度為120÷(21﹣6)+20=28(m/min).答:小芳上山的速度為20m/min,爸爸上山的速度為28m/min.(2)∵(28﹣20)×(24+6﹣21)=72(m),∴點(diǎn)C的坐標(biāo)為(30,72);∵二人返回山下的時(shí)間相差4min,44﹣4=40(min),∴點(diǎn)D的坐標(biāo)為(40,192).設(shè)爸爸下山時(shí)CD段的函數(shù)解析式為y=kx+b,將C(30,72)、D(40,192)代入y=kx+b,,解得:.答:爸爸下山時(shí)CD段的函數(shù)解析式為y=12x﹣288(24≤x≤40).(3)設(shè)DE段的函數(shù)解析式為y=mx+n,將D(40,192)、E(44,0)代入y=mx+n,,解得:,∴DE段的函數(shù)解析式為y=﹣48x+2112(40≤x≤44).當(dāng)y=12x﹣288>120時(shí),34<x≤40;當(dāng)y=﹣48x+2112>120時(shí),40≤x<41.1.41.1﹣34=7.1(min).答:二人互相看不見的時(shí)間有7.1分鐘.點(diǎn)睛:本題考查了一次函數(shù)的應(yīng)用、待定系數(shù)法求一次函數(shù)解析式以及一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,解題的關(guān)鍵是:(1)根據(jù)數(shù)量關(guān)系,列式計(jì)算;(2)根據(jù)點(diǎn)C、D的坐標(biāo),利用待定系數(shù)法求出CD段的函數(shù)解析式;(3)利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征分別求出CD、DE段縱坐標(biāo)大于120時(shí)x的取值范圍.21、(1)y=6x;(2)MB=【解題分析】

(1)將A(3,2)分別代入y=kx

,y=ax中,得a、k(2)有S△OMB=S△OAC=12×k=3

,可得矩形OBDC的面積為12;即OC×OB=12

;進(jìn)而可得m、n的值,故可得BM與DM【題目詳解】(1)將A(3,2)代入y=kx中,得2=k∴反比例函數(shù)的表達(dá)式為y=6(2)BM=DM,理由:∵S△OMB=S△OAC=12×k∴S矩形OBDC=S四邊形OADM+S△OMB+S△OAC=3+3+6=12,即OC·OB=12,∵OC=3,∴OB=4,即n=4,∴m=6∴MB=32,MD=3-32=3【題目點(diǎn)撥】本題考查了待定系數(shù)法求反比例函數(shù)和正比例函數(shù)解析式,反比例函數(shù)比例系數(shù)的幾何意義,矩形的性質(zhì)等知識(shí).熟練掌握待定系數(shù)法是解(1)的關(guān)鍵,掌握反比例函數(shù)系數(shù)的幾何意義是解(2)的關(guān)鍵.22、(1)S=﹣2(0<t<1);(2);(3)見解析.【解題分析】

(1)如圖1,根據(jù)S=S△ABC-S△APQ,代入可得S與t的關(guān)系式;

(2)設(shè)PM=x,則AM=2x,可得AP=x=4t,計(jì)算x的值,根據(jù)直角三角形30度角的性質(zhì)可得AM=2PM=,根據(jù)AM=AO+OM,列方程可得t的值;

(3)存在,通過畫圖可知:N在CD上時(shí),直線PN平分四邊形APMN的面積,根據(jù)面積相等可得MG=AP,由AM=AO+OM,列式可得t的值.【題目詳解】解:(1)如圖1,∵四邊形ABCD是菱形,∴∠ABD=∠DBC=∠ABC=60°,AC⊥BD,∴∠OAB=30°,∵AB=20,∴OB=10,AO=10,由題意得:AP=4t,∴PQ=2t,AQ=2t,∴S=S△ABC﹣S△APQ,=,=,=﹣2t2+100(0<t<1);(2)如圖2,在Rt△APM中,AP=4t,∵點(diǎn)Q關(guān)于O的對(duì)稱點(diǎn)為M,∴OM=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論